Communications in Mathematical Physics

, Volume 172, Issue 3, pp 551–569

The analysis of the Widom-Rowlinson model by stochastic geometric methods

  • J. T. Chayes
  • L. Chayes
  • R. Kotecký
Article

Abstract

We study the continuum Widom-Rowlinson model of interpenetrating spheres. Using a new geometric representation for this system we provide a simple percolation-based proof of the phase transition. We also use this representation to formulate the problem, and prove the existence of an interfacial tension between coexisting phases. Finally, we ascribe geometric (i.e. probabilistic) significance to the correlation functions which allows us to prove the existence of a sharp correlation length in the single-phase regime.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Aizenman, M.: Geometric Analysis of Φ4 Fields and Ising Models I, II. Commun. Math. Phys.86, 1–48 (1982)Google Scholar
  2. [ACCN] Aizenman, M., Chayes, J.T., Chayes, L., Newman, C.M.: Discontinuity of the Magnetization in One-Dimensional 1/|x−y|2 Ising and Potts Models. J. Stat. Phys.50, 1–40 (1988)Google Scholar
  3. [CGLM] Cassandro, M., Gallavotti, G., Lebowitz, J.L., Monroe, J.L.: Existence and Uniqueness of Equilibrium States for Some Spin and Continuum systems. Commun. Math. Phys.32, 153–165 (1973)Google Scholar
  4. [CK] Chayes, L., Klein, D.: A Generalization of Poisson Convergence to “Gibbs Convergence” with Applications to Statistical Mechanics. Helv. Phys. Acta67, 30–42 (1994)Google Scholar
  5. [FK] Fortuin, C.M., Kasteleyn, P.W.: On the Random Cluster Model I. Introduction and Relation to Other Models. Physica57, 536–564 (1972)Google Scholar
  6. [FKG] Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation Inequalities on Some Partially Ordered Sets. Commun. Math. Phys.22, 89–103 (1971)Google Scholar
  7. [Ge] Georgii, H.-O.: Private communication, unpublishedGoogle Scholar
  8. [GLM] Giacomin, G., Lebowitz, J.L., Maes, C.: Agreement Percolation and Phase Coexistence in Some Gibbs Systems. PreprintGoogle Scholar
  9. [Gr] Grimmett, G.: Percolation, Heidelberg, New York: Springer, Berlin, 1989Google Scholar
  10. [GS] Givens, J.A., Stell, G.: The Kirkwood-Salsburg Equation for Random Continuum Percolation. J. Stat. Phys.,59, 981–1018 (1980)Google Scholar
  11. [H] Harris, T.E.: A Lower Bound for the Critical Probability in a Certain Percolation Process. Proc. Camb. Phil. Soc.56, 13–20 (1960)Google Scholar
  12. [Ho] Holley, R.: Remarks on the FKG Inequalities. Commun. Math. Phys.36, 227–231 (1974)Google Scholar
  13. [J] Janson, S.: Bounds on the Distribution of Extremal Values of a Scanning Process. Stoch. Proc. Appl.318, 313–328 (1984)Google Scholar
  14. [K] Klein, W.: Potts-Model Formulation of Continuum Percolation. Phys. Rev. B26, 2677–2678 (1982)Google Scholar
  15. [L] Liggett, T.M.: Interacting Particle Systems. Heidelberg, New York: Springer, Berlin, 1985Google Scholar
  16. [LG] Lebowitz, J.L., Gallavotti, G.: Phase Transitions in Binary Lattice Gases. J. Math. Phys.12, 1229–1233 (1971)Google Scholar
  17. [LM] Lebowitz, J.L., Monroe, J.L.: Inequalities for Higher Order Ising Spins, and for Continuum Fluids. Commun. Math. Phys.28, 301–311 (1972)Google Scholar
  18. [LL] Lebowitz, J.L., Lieb, E.H.: Phase Transitions in a Continuum Classical System with Finite Interactions. Phys. Lett.39A, 98–100 (1972)Google Scholar
  19. [P] Preston, C.: Spatial Birth-and-Death Processes. Bull. Inst. Inter. Stat.46 (2), 371–391 (1975)Google Scholar
  20. [R] Ruelle, D.: Existence of a Phase Transition in a Continuous Classical System. Phys. Rev. Lett.27, 1040–1041 (1971)Google Scholar
  21. [Ru] Russo, L.: An Approximate Zero-One Law. Zeitschrift für Wahrscheinlichkeitstheorie and Ihre Grenzgebiete61, 129–139 (1982)Google Scholar
  22. [WR] Widom, B., Rowlinson, J.S.: New Model for the Study of Liquid-Vapor Phase Transitions. J. Chem. Phys.52, 1670–1684 (1970)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. T. Chayes
    • 1
  • L. Chayes
    • 1
  • R. Kotecký
    • 2
  1. 1.Department of MathematicsUCLALos AngelesUSA
  2. 2.Center for Theoretical StudyCharles UniversityPraha 1Czech Republic

Personalised recommendations