Advertisement

Communications in Mathematical Physics

, Volume 163, Issue 1, pp 185–215 | Cite as

Local properties of Coulombic wave functions

  • M. Hoffmann-Ostenhof
  • T. Hoffmann-Ostenhof
  • H. Stremnitzer
Article

Abstract

We investigate the local behaviour of solutions of a nonrelativistic Schrödinger equation which describe Coulombic systems. Firstly we give a representation theorem for such solutions in the neighbourhood of Coulombic singularities generalizing previous results (Cusp conditions) due to Kato and others. Secondly we investigate the influence of Fermi statistics on the local behaviour of many fermionic wave functions, showing that e.g. anN-electron wave function must have zeros of order at leastN4/3 for largeN.

Keywords

Neural Network Statistical Physic Wave Function Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abott, P.C., Maslen, E.N.: Coordinate systems and analytic expansions for three-body atomic wave functions. I. Partial summation for the Fock expansion in hyperspherical coordinates. J. Phys. A20, 2043–2075 (1987)Google Scholar
  2. 2.
    Aizenman, M., Simon, B.: Brownian motion and Harnack's inequality for Schrödinger operators. Commun. Pure Appl. Math.35, 209–237 (1982)Google Scholar
  3. 3.
    Avery, J.: Hyperspherical harmonics: applications in quantum theory. Dordrecht: Kluwer Academic Publishers 1989Google Scholar
  4. 4.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations, 2nd ed. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  5. 5.
    Hinz, A.M., Kalf, H.: Subsolution estimates and Harnack's inequality for Schrödinger operators. J. Reine Angew. Math.404, 118–134 (1990)Google Scholar
  6. 6.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: Local properties of solutions of Schrödinger equations. Commun. Partial Diff. Eq.17, 491–522 (1992)Google Scholar
  7. 7.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Stremnitzer, H.: Electronic wave functions near coalescence points. Phys. Rev. Lett.68, 3857–3860 (1992).CrossRefGoogle Scholar
  8. 8.
    Hoffmann-Ostenhof, M., Seiler, R.: Cusp conditions for eigenfunctions ofN-electron systems. Phys. Rev. A23, 21–23 (1981)CrossRefGoogle Scholar
  9. 9.
    Hörmander, L.: Uniqueness theorem for second order elliptic differential equations. Commun. Partial Diff. Eq.8, 21–64 (1983)Google Scholar
  10. 10.
    Judd, B.R.: Operator techniques in atomic spectroscopy. New York: McGraw-Hill 1963Google Scholar
  11. 11.
    Kato, T.: On the eigenfunctions of many particle systems in quantum mechanics. Commun. Pure and Appl. Math.10, 151–171 (1957)Google Scholar
  12. 12.
    Kato, T.: Schrödinger operators with singular potentials. Israel J. Math.13, 135–148 (1973)Google Scholar
  13. 13.
    Kutzelnigg, W., Klopper, W.: Wave functions with terms linear in the interelectronic coordinates to take care on the correlation cusp. I. General theory. J. Chem. Phys.94, 1985–2001 (1991)CrossRefGoogle Scholar
  14. 14.
    Leray, J. In: Ciarlet, P.G., Roseau, M. (eds.). Trends and applications of pure mathematics to mechanics. Lecture Notes in Physics, 195, pp. 235–247. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  15. 15.
    Morgan, J.D. III: Convergence properties of Fock's expansion forS-state eigenfunctions of the He-Atom. Theor. Chim. Acta69, 181–223 (1986)CrossRefGoogle Scholar
  16. 16.
    Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, selfadjointness. New York: Academic Press 1975Google Scholar
  17. 17.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc.7, 447–526 (1982)Google Scholar
  18. 18.
    Stein, E.M., Weiss, G.: Fourier analysis on Euclidean spaces. Princeton, NJ: Princeton University Press 1971Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. Hoffmann-Ostenhof
    • 1
  • T. Hoffmann-Ostenhof
    • 2
    • 3
  • H. Stremnitzer
    • 4
  1. 1.Institut für MathematikUniversität WienWienAustria
  2. 2.Erwin Schrödinger International Institute of Mathematical PhysicsWienAustria
  3. 3.Institut für Theoretische ChemieUniversität WienWienAustria
  4. 4.Institut für Theoretische PhysikUniversität WienWienAustria

Personalised recommendations