Advertisement

Space Science Reviews

, Volume 69, Issue 3–4, pp 215–253 | Cite as

Plasma-induced sputtering of an atmosphere

  • R. E. Johnson
Article

Abstract

Magnetospheric ions, solar wind ions, and locally produced pick-up ions can impact the atmospheres of objects in the solar system, transferring energy by collisions with atmospheric atoms and molecules. This can result in an expansion of the atmospheric corona with a fraction of the energetic atoms or molecules being lost (sputtered) from the atmosphere. The expanded corona presents a larger target to the incident plasma, which in turn enhances pick-up ion formation and collisional ejection. In this manner a significant flux of atoms or molecules can be lost from an atmosphere, affecting its long-term evolution. This has been shown to be an important process for the dynamics and evolution of the atmosphere of lo, which is bombarded by the Jovian magnetospheric plasma, and for loss of atmosphere from Titan. Sputtering by pick-up ion bombardment has been shown to remove material from the atmosphere of Mars affecting the observed isotope ratios, and energetic O+ precipitation affects the Earth's thermosphere. The physics of ion bombardment of a gas which leads to atmospheric sputtering is described here. Analytic expressions derived from transport equations are shown to be useful for estimating the sputtering rate. These are compared to results from transport and Monte-Carlo calculations.

Keywords

Solar Wind Solar System Large Target Magnetospheric Plasma Significant Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adloff, J.-P., Gaspar, P. P., Imamura, M., Maddock, A. G., Matsuura, T., Sano, H., and Yoshihara, K.: 1992,Handbook of Hot Atom Chemistry, Kodansha, Tokyo.Google Scholar
  2. Allison, S. K.: 1958.Rev. Mod. Phys. 30, 1137.CrossRefGoogle Scholar
  3. Andersen, H. H. and Bay, H. L.: 1981, in D. Behrisch (ed.),Sputtering by Particle Bombardment I, Springer-Verlag, Berlin.Google Scholar
  4. Atreya, S. K., Pollack, J. B., and Matthews, M. S.: 1989.Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson.Google Scholar
  5. Betz, G., Dobrozemsky, R., and Viehböck, F. F.: 1971,Int. J. Mass Spectr. Ion Phys. 6, 457.Google Scholar
  6. Betz, G. and Wehner, G. K.: 1983. in R. Behrisch (ed.),Sputtering by Particle Bombardment II. Springer-Verlag, Berlin, pp. 11–90.Google Scholar
  7. Biersack, J. P.: 1987.Nucl. Instrum. Meth. B27, 3.Google Scholar
  8. Bischel, H., Person, D. H., Boring, J. W., Green, A., Inokuti, I., and Hurst, G.: 1979.Average Energy to Produce an Ion Pair IVRU-Report-31, Washington. DC.Google Scholar
  9. Chamberlain, J. W.: 1977.J.Geophys. Res. 82, 1–9.Google Scholar
  10. Chamberlain, J. W. and Hunten, D. M.: 1987.Theory of Planetary Atmospheres, Academic Press, New York.Google Scholar
  11. Chamberlain, J. W. and Smith, G. R.: 1971.Space Sci. Rev. 19, 675–684.Google Scholar
  12. Cheng, A. F. and Johnson, R. E.: 1989, in S. K. Atreya (ed.).Origins and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press, Tucson.Google Scholar
  13. Cloutier, P. A., McElroy, M. B., and Michel, F. C.: 1969.J. Geophys. Res. 74, 6215–6225.Google Scholar
  14. Combi, M. and Smith, W. N.: 1988.Astrophys. J., 1026–1043.Google Scholar
  15. Eckstein, W.: 1991,Computer Simulations of Ion-Solid Interactions, Springer-Verlag, Berlin.Google Scholar
  16. Fanale, F. P., Banerdt, W. B., Elson, L. S., Johnson, T. V., and Zurck, R. W.: 1982, in D. Morrison (ed.),Satellites of Jupiter. University of Arizona Press, Tucson, pp. 756–781.Google Scholar
  17. Flynn, B. and Mendillo, M.: 1993.Science 261, 184–186.Google Scholar
  18. Flynn, B., Mendillo, M., and Baumgardner, J.: 1992.Icarus 99, 115–130.CrossRefGoogle Scholar
  19. Fox, J. L.: 1993,Geophys. Res. Letters 20, 1847–1850.Google Scholar
  20. Fox, J. L. and Dalgarno, A.: 1983,J. Geophys. Res. 88, 9027–9032.Google Scholar
  21. Goertz, C. K.: 1980,J. Geophys. Res. 85, 2949–2955.Google Scholar
  22. Gosler, R. and Semrad, D.: 1991.Phys. Rev. Letters 66, 1831–1833.CrossRefGoogle Scholar
  23. Gurwell, M. A. and Yung, Y. L.: 1993.Planetary Space Sci. 41, 91–104.CrossRefGoogle Scholar
  24. Haff, P. K. and Watson, C. C.: 1979.J. Geophys. Res. 84, 8436–8442.Google Scholar
  25. Haff, P. K., Switkowski, Z. E., and Tombrello, T. A. 1978.Nature 272, 804–805.CrossRefGoogle Scholar
  26. Haff, P. K., Watson, C. C., and Yung, Y. L.: 1981.J. Geophys. Res. 86, 9553–9561.Google Scholar
  27. Hodges, R. R.: 1990.Icarus 83, 410–433.CrossRefGoogle Scholar
  28. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B.: 1954.Molecular Theory of Gases and Liquids. John Wiley and Sons. New York, Ch. 8.Google Scholar
  29. Hunten, D. M.: 1985,Geophys. Res. Letters 12, 271–273.Google Scholar
  30. Hunten, D. M., Donahue, T. M., Walker, J. C. G., and Kasting, J. F.: 1989, in S. L. Atreya (ed.),Origins and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press, Tucson, pp. 396–422.Google Scholar
  31. Ip. W.-H.: 1988,Icarus 76, 135–145.CrossRefGoogle Scholar
  32. Ishimoto, M., Torr, M., Richards, P. G., and Torr, D. G.: 1986.J. Geophys. Res. 91, 5793–5802.Google Scholar
  33. Ishimoto, M., Romick, G. J., and Meng, C.-I.: 1992.J. Geophys. Res. 97, 8619–8629.Google Scholar
  34. Jakosky, B., Pepin, R., Johnson, R. E., and Fox. J. L.: 1994. J. Geophys. Res., in press.Google Scholar
  35. Johnson, R. E.: 1982.Introduction to Atomic and Molecular Collisions, Plenum, New York.Google Scholar
  36. Johnson, R. E.: 1989,Geophys. Res. Letters 16, 117–1120.Google Scholar
  37. Johnson, R. E.: 1990.Energetic Charged-Particle Interactions with Atmospheres and Surfaces, Springer-Verlag, Berlin.Google Scholar
  38. Johnson, R. E.: 1992,J. Geophys. Res. 97, 13911–13914.Google Scholar
  39. Johnson, R. E. and Brown, W. L.: 1982,Nucl. Instr. Meth. 198, 103–118.CrossRefGoogle Scholar
  40. Johnson, R. E. and McGrath, M. A.: 1993,Geophys. Res. Letters 20, 1735–1738.Google Scholar
  41. Johnson, R. E. and Schou, J.: 1993, in P. Sigmund (ed.),Fundamental Processes in Sputtering Atoms and Molecules Mat. Sys. Medd 43 Mem., Royal Dan Acad. Copenhagen, pp. 403–494.Google Scholar
  42. Kelly, R.: 1984, in O. Aucello and R. Kelly (eds.),Ion Bombarmdnet and Modification of Surfaces. Elsevier, New York, pp. 27–50.Google Scholar
  43. Kozyra, J. U.: 1989,Adv. Space Res. 9(12), 171–182.CrossRefGoogle Scholar
  44. Kozyra, J. U., Cravens, T. E., and Nagy, A. F.: 1982,J. Geophys. Res. 87, 2481–2486.Google Scholar
  45. Kozyra, J. V., Shelley, E. G., Comfort, R. H., Bruce, L.H., Cravens, T. E., and Nagy, A. F.: 1987,J. Geophys. Res. 92, 7487.Google Scholar
  46. Kumar, S., Hunten, D. M., and Pollack, J. B.: 1983,Icarus 55, 369–388.CrossRefGoogle Scholar
  47. Lammer, H. and Bauer, S. J.: 1991.J. Geophys. Res. 95, 1819–1825.Google Scholar
  48. Lammer, H. and Bauer, S. J.: 1993,Planetary Space Sci. 41, 657–663.CrossRefGoogle Scholar
  49. Lindhard, J. and Scharff, M.: 1961,Phys. Rev. 124, 128–130.CrossRefGoogle Scholar
  50. Linker, J. A., Kivelson, M. C., and Wallace, R. J.: 1988,Geophys. Res. Letters 25, 1311–1314.Google Scholar
  51. Luhmann, J. G.: 1986,Space Sci. Rev. 44, 240–306.CrossRefGoogle Scholar
  52. Luhmann, J. G.: 1991, in ‘Cometary Plasma Processes’,Geophys. Monograph 61, pp. 5–16. AGU, Washington.Google Scholar
  53. Luhmann, J. G. and Kozyra, J. W.: 1991,J. Geophys. Res. 46, 5457–5463.Google Scholar
  54. Luhmann, J. G., Johnson, R. E., and Zhang, M. H. G.: 1992.Geophys. Res. Letters 19, 2151–2154.Google Scholar
  55. Matson, D. L., Johnson, T. V., and Fanale, F. P.: 1974,Astrophys. J. 192, 143–148.CrossRefGoogle Scholar
  56. Mendillo, M., Baumgartner, J., Flynn, B., and Hughes, W. J.: 1990,Nature 348, 312–314.CrossRefGoogle Scholar
  57. Miller, J. H. and Green, A. E. S.: 1973.Radiat. Res. 54, 354–369.Google Scholar
  58. MacGrath, M. A. and Johnson, R. E.: 1987,Icarus 69, 519–531.CrossRefGoogle Scholar
  59. MacGrath, M. A. and Johnson, R. E.: 1989,J. Geophys. Res. 94, 2677–2683.Google Scholar
  60. Pepin, R.: 1994,Icarus, in press.Google Scholar
  61. Perez-de-Tejada, H.: 1992.J. Geophys. Res. 97, 3159–3167.Google Scholar
  62. Pilcher, C. B., Smyth, W. H., Combi, M. R., and Fertel, J. H.: 1984,Astrophys. J. 287, 427–444.CrossRefGoogle Scholar
  63. Pospieszalska, M. K. and Johnson, R. E.: 1992,Geophys. Res. Letters 19, 949–952.Google Scholar
  64. Pospieszalska, M. K. and Johnson, R. E.: 1994.Icarus, to be submitted.Google Scholar
  65. Richardson, J. D. and Johnson, R. E.: 1994,Icarus, to be submitted.Google Scholar
  66. Roberts, W. W. and Hausman, M. A.: 1988.J. Comp. Math. 77, 283–317.Google Scholar
  67. Robinson, M. T.: 1993, inFundamental Processes in Sputtering Atoms and Molecules. Mat. Fys. Modd. 43 Mc., Roy. Dan. Acad. Copenhagen, pp. 27–80.Google Scholar
  68. Schneider, N. M., Hunten, D. M., Wells, W. K., and Trafton, L. M.: 1987,Science 238, 55–58.Google Scholar
  69. Schneider, N. M., Trauger, J. T., Wilson, J. K., Brown, D. J., Evans, R. W., and Shemansky, D. E.: 1991,Science 253, 1394–1397.Google Scholar
  70. Sieveka, E. M. and Johnson, R. E.: 1984,Astrophys. J. 287, 418–426.CrossRefGoogle Scholar
  71. Sieveka, E. M. and Johnson, R. E.: 1985,J. Geophys. Res. 90, 5327–5331; Erratum 1986,91, 4608.Google Scholar
  72. Sigmund, P. and Lam, N. Q.: 1993, inFundamental Processes in Sputtering Atoms and Molecules. Mat. Fys. Modd. 43 Mc., Roy. Dan Acad. Copenhagen. pp. 255–349.Google Scholar
  73. Sigmund, P.: 1969.Phys. Rev. 184, 383–416.CrossRefGoogle Scholar
  74. Sigmund, P.: 1981, in R. Behrisch (ed.),Sputtering by Particle Bombardment 1, Springer-Verlag. Berlin, pp. 9–72.Google Scholar
  75. Sigmund, P. and 20 other authors: 1989,Nucl. Inst. Methods 36, 110.Google Scholar
  76. Sigmund, P.: 1993,Fundamental Processes in Sputtering Atoms and Molecules. Mat. Fys. Modd. 43 Mc., Roy. Dan. Acad. Copenhagen.Google Scholar
  77. Sigmund, P. and Lam. N. Q.: 1993, inFundamental Processes in Sputtering Atoms and Molecules. Mat. Fys. Modd. 43 Mc., Roy. Dan. Acad. Copenhagen, pp. 255–349.Google Scholar
  78. Smyth, W. and Combi, M.: 1991,J. Geophys. Res. 96, 22711–22728.Google Scholar
  79. Spreiter, J. R. and Stahara, S. S.: 1980,J. Geophys. Res. 85, 6769–6777.Google Scholar
  80. Thompson, M. W.: 1968,Phil. Mag. 18, 377–414.Google Scholar
  81. Vicanek, M., Jimenez-Rodriguez, J. J., and Sigmund, P.: 1989,Nucl. Instr. Methods B 36, 124–136.Google Scholar
  82. Vicanek, M., Conrad, U., and Urbassek, H. M. 1993,Phys. Rev. B 47, 617–629.CrossRefGoogle Scholar
  83. Watson, C. C.: 1982,Proc. 12th Lunar Planetary Conf., Lunar Planetary Institute, Houston, pp. 1569–1571.Google Scholar
  84. Watson, C. C., Haff, P. K., and Tombrello, T. A.: 1980,Proc. 11th Lunar Planetary Conf., Lunar Planetary Institute, Houston, pp. 2479–2502.Google Scholar
  85. Wilson, J. K. and Schneider, N. M.: 1994,Icarus, in press.Google Scholar
  86. Winterbon, K. B.: 1975,Ion Implantation Range and Energy Distributions, Vol. 2.Low Energy Incident Ions, Plenum, New York.Google Scholar
  87. Wolff, R. S. and Mendis, D. A.: 1983,J. Geophys. Res. 88, 4749–4769.Google Scholar
  88. Wolfgladrow, D. A., Neubauer, F. M., and Lussen, M. 1987,Geophys. Res. 92, 9949–9961.Google Scholar
  89. Wong, M. and Johnson, R. E.: 1994,Icarus, Submitted.Google Scholar
  90. Ziegler, J. F., Biersack, J. P., and Littmark, U.: 1985,The Stopping and Range of Ions in Solids. Pergamon, New York.Google Scholar
  91. Zhang, M. H. G., Luhmann, J. G., Nagy, A. F., Spreiter, J. R., and Stahara, S. S., 1993a,J. Geophys. Res. 98, 3311–3318.Google Scholar
  92. Zhang, M. H. G., Luhmann, J. G., Bougher, S. W., and Nagy, A. F.: 1993b,J. Geophys. Res. 98, 10915–10923.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • R. E. Johnson
    • 1
  1. 1.Engineering PhysicsUniversity of VirginiaCharlottesvilleU.S.A.

Personalised recommendations