Communications in Mathematical Physics

, Volume 173, Issue 3, pp 559–597 | Cite as

Mirror manifolds in higher dimension

  • Brian R. Greene
  • David R. Morrison
  • M. Ronen Plesser


We describe mirror manifolds in dimensions different from the familiar case of complex threefolds. We isolate certain simplifying features present only in dimension three, and supply alternative methods that do not rely on these special characteristics and hence can be generalized to other dimensions. Although the moduli spaces for Calabi-Yaud-folds are not “special Kähler manifolds” whend>3, they still have a restricted geometry, and we indicate the new geometrical structures which arise. We formulate and apply procedures which allow for the construction of mirror maps and the calculation of order-by-order instanton corrections to Yukawa couplings. Mathematically, these corrections are expected to correspond to calculating Chern classes of various parameter spaces (Hilbert schemes) for rational curves on Calabi-Yau manifolds. Our mirror-aided calculations agree with those Chern class calculations in the limited number of cases for which the latter can be carried out with current mathematical tools. Finally, we make explicit some striking relations between instanton corrections for various Yukawa couplings, derived from the associativity of the operator product algebra.


Manifold Modulus Space Yukawa Coupling Operator Product Mathematical Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dixon, L.J.: In: Superstrings, Unified Theories, and Cosmology 1987. Furlan, G. et al. (eds.), Singapore: World Scientific, 1988, p. 67; Lerche, W., Vafa, C., Warner, N.P.: Nucl. Phys.B324, 427 (1989)Google Scholar
  2. 2.
    Candelas, P., Lynker, M., Schimmrigk, R.: Nucl. Phys.B341, 383 (1990)Google Scholar
  3. 3.
    Greene, B.R., Plesser, M.R.: Nucl. Phys.B338, 15 (1990)Google Scholar
  4. 4.
    Aspinwall, P.S., Lütken, C.A., Ross, G.G.: Phys. Lett.241B, 373 (1990)Google Scholar
  5. 5.
    Candelas, P., de la Ossa, X.C., Green, P.S., Parkes, L.: Phys. Lett.258B, 118 (1991); Nucl. Phys.B359, 21 (1991)Google Scholar
  6. 6.
    Morrison, D.R.: In: Essays on Mirror Manifolds. Yau, S.-T. (ed.), Hong-Kong: International Press, 1992, p. 241Google Scholar
  7. 7.
    Font, A.: Nucl. Phys.B391, 358 (1993)Google Scholar
  8. 8.
    Klemm, A., Theisen, S.: Nucl. Phys.B389, 153 (1993)Google Scholar
  9. 9.
    Katz, S.: In: Projective Geometry with Applications. Ballico, E. (ed.), New York: Marcel Dekker, p. 231Google Scholar
  10. 10.
    Ellingsrud, G., Strømme, S.A.: The number of twisted cubic curves on the general quintic threefold. Math. Scand., to appearGoogle Scholar
  11. 11.
    Ellingsrud, G., Strømme, S.A.: Bott's formula and enumerative geometry. Alg-geom/9411005Google Scholar
  12. 12.
    Witten, E.: Surveys in Diff. Geom.1, 243 (1991)Google Scholar
  13. 13.
    Greene, B.R., Plesser, M.R.: In: Proceedings of the Second International PASCOS conference. Northeastern University, 1991Google Scholar
  14. 14.
    Berglund, P., Hübsch, T.: Nucl. Phys.B393, 377 (1993); Batyrev, V.: J. Alg. Geom.3, 493 (1994); Borisov, L.A.: Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties. Alg-geom/9310001; Batyrev, V., Borisov, L.A.: Dual cones and mirror symmetry for generalized Calabi-Yau manifolds. Alg-geom/9402002Google Scholar
  15. 15.
    Aspinwall, P.S., Morrison, D.R.: Commun. Math. Phys.151, 245 (1993)Google Scholar
  16. 16.
    Ferrara, S., Strominger, A.: In: Strings '89, Arnowitt, R. et al. (eds.), Singapore: World Scientific, 1989; Cecotti, S., Ferrara, S., Girardello, L.: Int. J. Mod. Phys.4, 2475 (1989); Phys. Lett.B213, 443 (1988)Google Scholar
  17. 17.
    Strominger, A.: Commun. Math. Phys.133, 163 (1990)Google Scholar
  18. 18.
    Dixon, L., Kaplunovsky, V., Louis, J.: Nucl. Phys.B329, 27 (1990)Google Scholar
  19. 19.
    Candelas, P., de la Ossa, X.: Nucl. Phys.B355, 455 (1991)Google Scholar
  20. 20.
    de Wit, B., Van Proeyen, A.: Nucl. Phys.B245, 89 (1985); de Wit, B., Lauwers, P., Van Proeyen, A.: Nucl. Phys.B255, 569 (1985); Cremmer, E., Kounnas, C., Van Proeyen, A., Derendinger, J.P., de Wit, B., Girardello, L.: Nucl. Phys.B250, 385 (1985)Google Scholar
  21. 21.
    Tian, G.: In: Mathematical Aspects of String Theory, Yau, S.-T. (ed.), Singapore: World Scientific, 1987, p. 629Google Scholar
  22. 22.
    Cadavid, A.C., Ferrara, S.: Phys. Lett.B267, 193 (1991)Google Scholar
  23. 23.
    Ceresole, A., D'Auria, R., Ferrara, S., Lerche, W., Louis, J.: Int. J. Mod. Phys.A8, 79 (1993)Google Scholar
  24. 24.
    Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Commun. Math. Phys.165, 311 (1994)Google Scholar
  25. 25.
    Witten, E.: In: Essays on Mirror Manifolds. Yau, S.-T. (ed.), Hong Kong: International Press, 1992, p. 120Google Scholar
  26. 26.
    Distler, J.: Notes onN=2 sigma models. Princeton preprint PUPT-1365, hep-th/9212062Google Scholar
  27. 27.
    Roan, S.-S.: Int. J. Math.2, 439 (1991)Google Scholar
  28. 28.
    Candelas, P.: Nucl. Phys.B298, 458 (1988)Google Scholar
  29. 29.
    Morrison, D.R.: J. Am. Math. Soc.6, 223 (1993)Google Scholar
  30. 30.
    Lerche, W., Smit, D.-J., Warner, N.: Nucl. Phys.B372, 87 (1992)Google Scholar
  31. 31.
    Smith, F.C.: Bull. Am. Math. Soc.45, 629 (1939)Google Scholar
  32. 32.
    Dijkgraaf, R.: A geometrical approach to two dimensional conformal field theory. Ph.D. thesis, University of Utrecht, pp. 29–34Google Scholar
  33. 33.
    Witten, E.: Nucl. Phys.B340, 281 (1990)Google Scholar
  34. 34.
    Cecotti, S., Vafa, C.: Nucl. Phys.B367, 359 (1991)Google Scholar
  35. 35.
    Griffiths, P.A.: Ann. Math.90, 460 (1969)Google Scholar
  36. 36.
    Distler, J., Greene, B.: Nucl. Phys.B309, 295 (1988)Google Scholar
  37. 37.
    Dine, M., Seiberg, N., Wen, X.-G., Witten, E.: Nucl. Phys.B289, 319 (1987)Google Scholar
  38. 38.
    Gromov, M.: Invent. Math.82, 307 (1985), Proc. Int. Congress Math., Berkeley 1986, Providence, RI: Am. Math. Soc., 1987, p. 81Google Scholar
  39. 39.
    Witten, E.: Commun. Math. Phys.118, 411 (1988)Google Scholar
  40. 40.
    McDuff, D.: Invent. Math.89, 13 (1987)Google Scholar
  41. 41.
    Katz, S.: In: Essays on Mirror Manifolds. Yau, S.-T. (ed.), Hong Kong: International Press, 1992, p. 168Google Scholar
  42. 42.
    Witten, E.: Nucl. Phys.B371, 191 (1992)Google Scholar
  43. 43.
    Kontsevich, M.: Enumeration of rational curves via torus actions. Max-Planck-Institute preprint, hep-th/9405035Google Scholar
  44. 44.
    Kontsevich, M., Manin, Yu.: Commun. Math. Phys.164, 525 (1994)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Brian R. Greene
    • 1
  • David R. Morrison
    • 2
  • M. Ronen Plesser
    • 3
    • 4
  1. 1.F.-R. Newman Laboratory of Nuclear StudiesCornell UniversityIthacaUSA
  2. 2.Institute for Advanced StudySchool of MathematicsPrincetonUSA
  3. 3.Department of PhysicsYale UniversityNew HavenUSA
  4. 4.Institute for Advanced StudySchool of Natural SciencesPrincetonUSA

Personalised recommendations