Journal of Molecular Evolution

, Volume 19, Issue 5, pp 309–321 | Cite as

Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems

  • J. W. Hastings
Original Articles


A diversity of organisms are endowed with the ability to emit light, and to display and control it in a variety of ways. Most of the luciferins (substrates) of the various phylogenetically distant systems fall into unrelated chemical classes, and based on still limited data, the luciferases (enzymes) and reaction mechanisms are distinctly different. Based on its diversity and phylogenetic distribution, it is estimated that bioluminescence may have arisen independently as many as 30 times in the course of evolution. However, there are several examples of cross-phyletic similarities among the substrates; some of these may be accounted for nutritionally, but in other cases they may have evolved independently.

Key words

Bioluminescence Luciferase Luciferin Evolution of luminescence Oxygenases Peroxides and light emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airth RL, Foerster GE, Behrens PQ (1966) The luminous fungi. In: Johnson FH, Haneda Y (eds) Bioluminescence in progress. Princeton University Press, Princeton, pp 203–223Google Scholar
  2. Allen RC (1982) Biochemiexcitation: chemiluminescence and the study of biological oxygenation reactions. In: Adam W, Cilento G (eds) Chemical and biological generation of excited states. Academic Press, New York, pp 309–344Google Scholar
  3. Anderson, JM (1980) Biochemistry of centipede bioluminescence. Photochem Phtobiol 34:179–181Google Scholar
  4. Anderson JM, Charboneau H., Cormier MJ (1974) Mechanism of calcium induction ofRenilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry 13:1195–1200CrossRefPubMedGoogle Scholar
  5. Balny C, Hastings JW (1975) Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry 14:4719–4723CrossRefPubMedGoogle Scholar
  6. Becvar JE, Tu SC, Hastings JW (1978) Activity and stability of the luciferase-flavin intermediate. Biochemistry 17:1807–1812CrossRefPubMedGoogle Scholar
  7. Brehm P, Morin JG, Reynolds GT (1973) Bioluminescent characteristics of the ophiuroidOphiopsila californica. Biol Bull 145:426Google Scholar
  8. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. John Wiley and Sons, New YorkGoogle Scholar
  9. Buck J (1978) Functions and evolutions of bioluminescence. In: Herring P (ed) Bioluminescence in action. Princeton University Press, Princeton, pp 419–460Google Scholar
  10. Bussinger M, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO J 1:27–33Google Scholar
  11. Cormier JM (1978) Comparative biochemistry of animal systems. In: Herring PJ (ed) Bioluminescence in action. Academic Press, London, pp 75–108Google Scholar
  12. Cormier, MJ, Dure LS (1963a) Studies on the bioluminescence ofBalanoglossus biminiensis extracts. I. Requirement for hydrogen peroxide and characteristics of the system. J Biol Chem 238:785–789Google Scholar
  13. Cormier MJ, Dure LS (1963b) Studies on the bioluminescence ofBalanoglossus biminiensis. II. Evidence for the peroxidase nature of balanoglossid luciferase. J Biol Chem 238:790–793Google Scholar
  14. Cormier MJ, Hori K, Karkhanis YD (1970) The conversion of luciferin to luciferyl sulfate by luciferin sulfokinase. Biochemistry 9:1184–1190CrossRefPubMedGoogle Scholar
  15. Cormier MJ, Hori K, Anderson JM (1974) Bioluminescence in coelenterates. Biochim Biophys Acta 346:137–164PubMedGoogle Scholar
  16. Darwin Charles (1859) On the Origin of Species. Harvard University Press. Facsimile of Original Edition (1964)Google Scholar
  17. DeLuca M, McElroy WD (1978) Purification and properties of firefly luciferase. In: Colowick SP, Kaplan NO (eds) Methods in enzymology vol 57. DeLuca M (ed) Academic Press, New York, p 3Google Scholar
  18. DeLuca M, McElroy WD (eds) (1981) Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical Applications. Academic Press, New YorkGoogle Scholar
  19. Duane W, Hastings JW (1975) Flavin mononucleotide reductase of luminous bacteria. Mol Cell Biochem 6:53–64CrossRefPubMedGoogle Scholar
  20. Dunlap JC, Hastings JW (1981) Biochemistry of dinoflagellate bioluminescence: the purification and characterization of dinoflagellate luciferin fromPyrocystis lunula. Biochemistry 20:983–989CrossRefPubMedGoogle Scholar
  21. Dunlap JC, Shimomura O, Hastings JW (1980) Cross reactivity between the light emitting systems of distantly related organisms involving a novel type of light-emitting compound. Proc Natl Acad Sci USA 77:1394–1397Google Scholar
  22. Dunlap JC, Hastings JW, Shimomura O (1981) Dinoflagellate luciferin is structurally related to chlorophyll. FEBS Letts 135:273–276CrossRefGoogle Scholar
  23. Dure LS, Cormier MJ (1961) Requirements for luminescence in extracts of balanoglossid species. J. Biol Chem 236:48–50Google Scholar
  24. Dure LS, Cormier MJ (1964) Studies on the bioluminescence ofBalanoglossus biminiensis extracts. III. A kinetic comparison of luminescent and non-luminescent peroxidation reactions and a proposed mechanism for peroxidase actions. J Biol Chem 239:2351–2359PubMedGoogle Scholar
  25. Eberhard A, Burlingame A, Eberhard C, Kenyon G, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer ofPhotobacterium fischeri luciferase. Biochemistry 20:2444–2449CrossRefPubMedGoogle Scholar
  26. Faulkner LR (1978) Chemiluminescence from electron-transfer processes. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology. Vol 57 DeLuca M (ed) Academic Press, New York, p. 494Google Scholar
  27. Fogel M, Hastings JW (1971) A substrate binding protein in theGonyaulax bioluminescence reaction. Arch Biochem Biophys 142:310–321CrossRefPubMedGoogle Scholar
  28. Galt C (1978) Bioluminescence: dual mechanism in a planktonic tunicate produces brilliant coastal display. Science 200:70–72PubMedGoogle Scholar
  29. Gast R, Lee J (1978) Isolation of the in vivo emitter in bacterial bioluminescence. Proc Natl Acad Sci USA 75:833–837Google Scholar
  30. Ghisla S, Hastings JW, Favaudon V, Lhoste JM (1978) Structure of the oxygen adduct intermediate in the bacterial luciferase reaction:13C NMR determination. Proc Natl Acad Sci USA 75:5860–5863Google Scholar
  31. Girsch SJ, Herring PJ, McCapra F (1976) Structure and preliminary biochemical characterization of the bioluminescence system ofOmmastrephes pteroptus. J Mar Biol Assoc U K 56:707–722Google Scholar
  32. Haneda Y, Johnson FH, Shimomura O (1966) The origin of luciferin in the luminous ducts ofParapriacanthus ransonneti, Pempheris klunzingeri, andApogon ellioti. In: Johnson FH, Haneda Y (eds) (1966) Bioluminescence in Progress. Princton University Press, pp 533–545Google Scholar
  33. Hansen K, Herring PJ (1977) Dual bioluminescent systems in the angler-fish genusLinophryne (Pisces: Ceratioidea) J Zool Lond 182:103–124Google Scholar
  34. Harvey EN (1926) Oxygen and luminescence. Biol Bull 51:89–97Google Scholar
  35. Harvey EN (1932) The evolution of bioluminescence and its relation to cell respiration. Proc Am Philos Soc 71:135–141Google Scholar
  36. Harvey EN (1952) Bioluminescence, Academic Press, New YorkGoogle Scholar
  37. Harvey EN (1957) A History of Luminescence, American Philosophical Society, PhiladelphiaGoogle Scholar
  38. Harvey EN, Korr IM (1938) Luminescence in absence of oxygen in the ctenophore,Mnemiopsis leidyi. J Cell Comp Physiol 12:319–323CrossRefGoogle Scholar
  39. Hastings JW (1955) The effect of oxygen concentration upon the luminescence of bacterial extracts. Anat Rec 122:458Google Scholar
  40. Hastings JW (1968) Bioluminescence. Ann Rev Biochem 37:597–630CrossRefGoogle Scholar
  41. Hastings JW (1976) Bioluminescence. Oceanus 19:17–27Google Scholar
  42. Hastings JW (1975) From chemical bonds to photons. In: Wolstenholme GEW, Fitzsimmons DW (eds) Energy Transformation in Biological Systems. Ciba Foundation Symposium 1 (new series). Associated Scientific Publishers, Amsterdam, pp 125–146Google Scholar
  43. Hastings JW, Balny C (1975) The oxygenated bacterial luciferaseflavin intermediate: reaction products via the light and dark pathways. J. Biol Chem 250:7288–7292PubMedGoogle Scholar
  44. Hastings JW, Davenport D (1957) The luminescence of the millipedeLuminodesmus sequviae. Biol Bull 113:120–138Google Scholar
  45. Hastings JW, Gibson QH (1963) Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide. J Biol Chem 238:2537–2554PubMedGoogle Scholar
  46. Hastings JW, Morin JG (1969a) Comparative biochemistry of calcium-activated photoproteins from the Ctenophore,Mnemiopsis, and the CoelenteratesAequorea, Obelia, Pelagia andRenilla. Biol Bull 137:402Google Scholar
  47. Hastings JW, Morin JG (1969b) Calcium-triggered light emission inRenilla: a unitary biochemical scheme for coelenterate bioluminescence. Biochem Biophys Res Commun 37:493–498CrossRefPubMedGoogle Scholar
  48. Hastings JW, Nealson KH (1977) Bacterial bioluminescence. Annu Rev Microbiol 31:549–595CrossRefPubMedGoogle Scholar
  49. Hastings JW, Nealson KH (1980) Exosymbiotic luminous bacteria occurring in luminous organs of higher animals. In: Schwemmler W, Schenk HEA (eds) Endocytobiology. Walter de Gruyter & Co, Berlin, pp 467–471Google Scholar
  50. Hastings JW, Nealson KH (1981) The symbiotic luminous bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The Procaryotes. Springer, Berlin Heidelberg New York, pp 1332–1345Google Scholar
  51. Hastings JW, Presswood RP (1978) In: Colowick SP, Kaplan NO, (eds) Methods in enzymology, vol 53. Fleischer S, Packer L (eds) Academic Press, New York, p 558Google Scholar
  52. Hastings JW, Wilson T (1976) Bioluminescence and chemiluminescence. Photochem Photobiol 23:461–473PubMedGoogle Scholar
  53. Hastings JW, McElroy WD, Coulombre J (1953) The effect of oxygen upon the immobilization reaction in firefly luminescence. J Cell Comp Physiol 42:137–150CrossRefGoogle Scholar
  54. Hastings JW, Riley WH, Massa J (1965) The purification, properties and chemiluminescent quantum yield of bacterial luciferase. J Biol Chem 240:1473–1481PubMedGoogle Scholar
  55. Hastings JW, Balny C, Le Peuch C, Douzou P (1973) Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc Natl Acad Sci USA 70:3468–3472Google Scholar
  56. Hastings JW, Ghisla S, Kurfürst M, Hemmerich P (1981) Fluorescence properties of luciferase peroxyflavins prepared with isoFMN and 2-thioFMN. In: DeLuca M, McElroy WD (eds) Bioluminescence and Chemiluminescence. Academic Press, New York, pp 97–102Google Scholar
  57. Henry JP, Michelson AM (1970) Studies in bioluminescence. IV. Properties of luciferin fromPholas dactylus. Biochem Biophys Acta 205:451–458PubMedGoogle Scholar
  58. Henry JP, Monny C, Michelson AM (1975) Characterization and properties ofPholas luciferase as a metalloglycoprotein. Biochemistry 14:3458–3466CrossRefPubMedGoogle Scholar
  59. Herrera A, Hastings JW, Morin JG (1974) Bioluminescence in cell free extracts of the scale worm Harmothoe (Annelida; Polynoidae). Biol BullGoogle Scholar
  60. Herring PJ (1974) New observations on the bioluminescence of echinoderms. J Zool Lond 172:401–418Google Scholar
  61. Herring PJ (1977) Luminescence in cephalopods and fish. In: Nixon M, Messenger J (eds) Biology of Cephalopods. Academic Press, London (Symp Zool Soc Lond 38), pp 127–159Google Scholar
  62. Herring PJ (1978) Bioluminescence of invertebrates other than insects. In: Herring PJ (ed) Bioluminescence in Action. Academic Press, London, pp 199–240Google Scholar
  63. Herring PJ (1979) Some features of the bioluminescence of the radiolarianThalassicolla sp. Marine Biol 53:213–216CrossRefGoogle Scholar
  64. Herring PJ (1981) Studies on bioluminescent marine amphipods. J Mar Biol Assoc UK 61:161–176Google Scholar
  65. Herring PJ, Morin JG (1978) Bioluminescence in Fishes. In: Herring PJ (ed) Bioluminescence in Action. Academic Press, London, pp 273–329Google Scholar
  66. Herring PJ, Clarke MR, Boletzky SV, Ryan KP (1981) The light organs ofSepiola atlantica andSpirula spirula (Mollusca: Cephalopoda): bacterial and intrinsic systems in the order seploidea. J Mar Biol Assoc UK 61:901–916Google Scholar
  67. Hopkins TA, Seliger HH, White EH, Cass MW (1967) The chemiluminescence of firefly luciferin. A model for the bioluminescence reaction and identification of the product excited state. J Am Chem Soc 89:7148–7150CrossRefPubMedGoogle Scholar
  68. Horn KA, Koo JY, Schmidt SP, Schuster GB (1978–79) Chemistry of the 1,2-dioexetane ring system. Chemiluminescence, fragmentations, and catalyzed rearrangement. Mol Photochem 9:1–37Google Scholar
  69. Inoue S, Kakoi H (1976)Oplophorus luciferin, bioluminescent substance of the decapod shrimpOplophorus spinosus andHeterocarpus laevigatus. Chem Commun XX:1056–1057Google Scholar
  70. Inoue S, Kakoi H, Goto T (1976) Squid bioluminescence III. Isolation and structure ofWatasenia luciferin. Tetrahedron Lett No 34:2971–2974CrossRefGoogle Scholar
  71. Inoue S, Okade K, Kakoi H, Goto T (1977) Fish bioluminescence I. Isolation of a luminescent substance from a myctophid fish,Neoscopelus microchir, and identification of it asOplophorus luciferin. Chem Lett XX:257–258Google Scholar
  72. Johnson FH, Shimomura O (1978) Introduction of theCypridina system. In: DeLuca M (ed) Methods of Enzymology, vol LVII. Academic Press, New York, pp 331–364Google Scholar
  73. Johnson FH, Sugiyama N, Shimomura O, Saiga Y, Haneda Y (1961) Crystalline luciferin from a luminescent fish,Parapricanthus beryciformes. Proc Natl Acad Sci 47:468–489Google Scholar
  74. Koka P, Lee J (1979) Separation and structure of the prosthetic group of the blue fluorescence protein from the bioluminescence bacteriumPhotobacterium phosphoreum. Proc Natl Acad Sci 76:3068–3072Google Scholar
  75. Koo J-Y, Schuster GB (1977) Chemically initiated electron exchange luminescence. A new chemiluminescence reaction path for organic peroxides. J Am Chem Soc 99:6107–6109CrossRefGoogle Scholar
  76. Koo J-Y, Schuster GB (1978) Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited states. J Am Chem Soc 100:4496–4503CrossRefGoogle Scholar
  77. Koo J-Y, Schmidt SP, Schuster GB (1978) Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems. Proc Natl Acad Sci 75:30–33PubMedGoogle Scholar
  78. Kopecky KR, Mumford C (1969) Luminescence in the thermal decomposition of 3,3,4-trimethyl-1,2-dioxentane. Can J Chem 47:709–711Google Scholar
  79. Kurfürst M, Ghisla S, Hastings JW (1982a) Bioluminescence emission of bacterial luciferase with FMN analogs, in particular with 1-deaza-FMN. In: Massey V, Williams C (eds) Flavins and Flavoproteins. Elsevier, Amsterdam, pp 353–358Google Scholar
  80. Kurfürst M, Ghisla S, Hastings JW (1982b) Structure and catalytic inactivity of the bacterial luciferase neutral flavin radical. Eur J Biochem 123:355–361CrossRefPubMedGoogle Scholar
  81. Kurfürst M, Ghisla S, Hastings JW (1983) Reaction of luciferase-FMN radical with O2 to form the bioluminescent hydroperoxide. Biochemistry (submitted)Google Scholar
  82. Leisman G, Nealson KH (1982) Characterization of a yellow fluorescent protein fromVibrio (Photobacterium) fischeri. In: Massey V, Williams C (eds) Flavins and Flavoproteins. Elsevier, Amsterdam, pp 383–386Google Scholar
  83. Leisman G, Cohn D, Nealson KH (1980) Bacterial origin of luminescence in marine animals. Science 208:1271–1273Google Scholar
  84. Mackie GO, Bone Q (1978) Luminescence and associated effector activity inPyrosoma. Proc R Soc London Ser B 202:483–495Google Scholar
  85. Makemson JC, Hastings JW (1982) Iron represses bioluminescence and affects catabolite repression inVibrio harveyi. Curr Microbiol 7:175–180CrossRefGoogle Scholar
  86. Margulis L (1981) Symbiosis and Cell Evolution. Freeman WH and Co, San FranciscoGoogle Scholar
  87. Martin JP, Fridovich I (1981) Evidence for a natural gene transfer from the ponyfish to its bioluminescent bacterial symbiontPhotobacter leiognathi. J Biol Chem 256:6080–6089PubMedGoogle Scholar
  88. McCapra F (1968) The application of the theory of electrocyclic reactions to bioluminescence. The mechanissm of bioluminescence. Chem Commun 155–156Google Scholar
  89. McCapra F, Hart R (1980) The origins of marine bioluminescence. Nature 286:660–661CrossRefGoogle Scholar
  90. McCapra F, Richardson DG (1964) Tetrahedron Lett 3167Google Scholar
  91. McElroy WD, DeLuca M (1978) Chemistry of firefly luminescence. In: Herring P (ed) Bioluminescence in Action. Plenum Press, New York, pp 109–127Google Scholar
  92. McElroy WD, Hastings JW (1956) Initiation and control of firefly luminescence. In: Prosser CL (ed) Physiological Triggers. Ronald Press, pp 80–84.Google Scholar
  93. McElroy WD, Seliger HH (1962) Origin and evolution of bioluminescence. In: Horizons in Biochemistry. Academic Press, New York, pp 91–101Google Scholar
  94. Morin JG (1969) Mechanisms controlling behavior and bioluminescence in the colonial hydroid, Obelia. Ph D Thesis, Harvard University, Cambridge, MAGoogle Scholar
  95. Morin JG (1981) Bioluminescent patterns in shallow tropical marine fishes. In: Gomez E (ed) Proceedings of the Fourth International Coral Reef Symposium, Vol. 2, pp 569–574, University of Phillipines, QuezonGoogle Scholar
  96. Morin JG, Cooke IM (1971) Behavioral physiology of the colonial hydroid Obelia: II. Stimulus initiated electrical activity and bioluminescence. J Exp Biol 54:707–721Google Scholar
  97. Morin JG, Hastings JW (1971a) Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol 77:305–312CrossRefPubMedGoogle Scholar
  98. Morin JG, Hastings JW (1971b) Energy transfer in a bioluminescent system. J Cell Physiol 77:313–318CrossRefPubMedGoogle Scholar
  99. Morin JG, Harrington A, Krieger N, Nealson KH, Baldwin TO, Hastings JW (1975) Light for all reasons: versatility in the behavioral repetoire of the flashlight fish. Science 190:74–76Google Scholar
  100. Morise H, Shimomura O, Johnson FH, Winant J (1974) Intermolecular energy transfer in the bioluminescent system ofAequorea. Biochemistry 13:2656–2662CrossRefPubMedGoogle Scholar
  101. Nealson KH, Hastings JW (1977) Low oxygen is optimal for luciferase synthesis in some bacteria: ecological implications. Arch Microbiol 112:9–16CrossRefPubMedGoogle Scholar
  102. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518PubMedGoogle Scholar
  103. Nealson KH, Hastings JW (1980) Luminescent bacterial endosymbionts in bioluminescent tunicates. In: Schwemmler W, Schenk HEA (eds) Endocytobiology. Walter de Gruyter & Co, Berlin, pp 461–466Google Scholar
  104. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322PubMedGoogle Scholar
  105. Nealson KH, Cohn D, Leisman G, Tebo B (1981) Co-evolution of luminous bacteria and their eukaryotic hosts. NY Acad Sci 361:76–91Google Scholar
  106. Nicolas MT (1979) Présence de photosomes dans les fractions lumineuses du système élytral des Polynoinae (Annelides polychetes). CR Acad Sci Paris Ser D 289:177–180Google Scholar
  107. Nicolas MT (1980) Solubilisation du système lumineux des Polynoiniens, comparaison de différents tests d'activité. Biol Cell 39:1, 5aGoogle Scholar
  108. Nicolas MT, Moreau M, Guerrier P (1978) Indirect nervous control of luminescence in the polynoid wormHarmothoe lunulata. J Exp Zool 206:427–433CrossRefGoogle Scholar
  109. Nicolas MT, Bassot J-M, Shimomura O (1982) Polynoidin: a membrane photoprotein isolated from the bioluminescent system of scaleworms. Photochem Photobiol 35:201–207Google Scholar
  110. Ohtsuka H, Rudie NG, Wampler JE (1976) Structure identification and synthesis of luciferin from the bioluminescent earthworm,Diplocardia longa. Biochemistry 15:1001–1004CrossRefPubMedGoogle Scholar
  111. Poinar GG Jr, Thomas GM, Hess R (1977) Characteristics of the specific bacterium associated withHeterorhabditis bacteriophora. Nematologica 23:97–102Google Scholar
  112. Poinar GO Jr, Thomas G, Haygood M, Nealson KH (1980) Growth and luminescence of the symbiotic bacteria associated with the terrestrial nematode.Heterorhabditis bacteriorphora. Soid Biology and Biochemistry 12:5–10CrossRefGoogle Scholar
  113. Poulsen EM (1962) “Ostracoda-Myodocopa, Part 1”. Carlsberg Foundation, Copenhagen, pp 1–414Google Scholar
  114. Robinson BH, Young RE (1981) Bioluminescence in pelagic octopods. Pacific Science 35:39–44Google Scholar
  115. Ruby EG, Nealson KH (1977) A luminous bacterium that emits yellow light. Science 196:432–434PubMedGoogle Scholar
  116. Salvini-Plawen L v, Mayr E (1977) On the evolution of photoreceptors and eyes. In: Hecht MK, Steere WC, Wallace B (eds) Evolutionary Biology, vol 10. Plenum Publishing Corp, pp 207–263Google Scholar
  117. Schmidt SP, Schuster GB (1978) Dioxetanone chemiluminescence by the chemically initiated electron exchange pathway. Efficient generation of excited states. J Am Chem Soc 100:1966–1968CrossRefGoogle Scholar
  118. Seliger HH (1975) The origin of bioluminescence. Photochem Photobiol 21:355–361PubMedGoogle Scholar
  119. Seliger HH, Morton RA (1968) A physical approach to bioluminescence. In: Giese AC (ed) Photophysiology, vol IV, Academic Press, New York, pp 253–314Google Scholar
  120. Shimomura O (1979) Structure of the chromophore ofAequorea green fluorescent protein. FEBS Lett 104:220–222CrossRefGoogle Scholar
  121. Shimomura O (1980) Chlorophyll-derived bile pigment in bioluminescent euphausiids. FEBS Lett 116:203–206CrossRefGoogle Scholar
  122. Shimomura O, Johnson FH (1966) Partial purification and properties of theChaetopterus luminescence system. In: Johnson FH, Haneda Y (eds) Bioluminescence in Progress. Princeton University Press, Princeton, NJ, pp 495–521Google Scholar
  123. Shimomura O, Johnson FH (1968a) The structure ofLatia luciferin. Biochemistry 7:1734–1738CrossRefPubMedGoogle Scholar
  124. Shimomura O (1981) A new type of ATP-activated bioluminescent system in the millipedeLuminodesmus sequoiae. FEBS Lett 128:242–244CrossRefGoogle Scholar
  125. Shimomura O, Johnson FH (1968b) Purification and properties of the luciferase and of a protein cofactor in the bioluminescence system ofLatia neritoides. Biochemistry 7:2574–2580CrossRefPubMedGoogle Scholar
  126. Shimomura O, Johnson FH (1968c)Chaetopterus photoprotein: crystallization and cofactor requirements for bioluminescence. Science 159:1239–1240PubMedGoogle Scholar
  127. Shimomura O, Johnson FH (1975) Regeneration of the photoprotein aequorin. Nature 256:236–238CrossRefPubMedGoogle Scholar
  128. Shimomura O, Johnson FH (1978) Peroxidized coelenterazine, the active group in bioluminescence of the photoprotein aequorin. Proc Natl Acad Sci 75:2611–2615PubMedGoogle Scholar
  129. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan,Aequorea. J Cell Comp Physiol 59:223CrossRefPubMedGoogle Scholar
  130. Shimomura O, Johnson FH, Saiga Y (1963) Partial purification and properties of theOdontosyllis luminescence system. J Cell Comp Physiol 61:275–292CrossRefGoogle Scholar
  131. Shimomura O, Beer JR, Johnson FH (1964) The cyanide activation ofOdontosyllis luminescence. J Cell Comp Physiol 64:15–22CrossRefGoogle Scholar
  132. Shimomura O, Johnson FH, Haneda Y (1966) Observation on the biochemistry of luminescence in the New Zealand glowworm,Arachnocampa luminosa. In: Johnson FH, Haneda Y (eds) Bioluminescence in Progress. Princeton University Press, Princeton, NJ, pp 487–494Google Scholar
  133. Shimomura O, Johnson FH, Kohama Y (1972) Reactions in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria. Proc Natl Acad Sci 69:2086–2089PubMedGoogle Scholar
  134. Shimomura O, Inoue S, Johnson FH, Haneda Y (1980) Widespread occurrence of coelenterazine in marine bioluminescence. Comp Biochem Physiol 65B:435–437Google Scholar
  135. Stone H (1968) The enzyme catalyzed oxidation ofCypridina luciferin. Biochem. Biophys Res Commun 31:386–391CrossRefPubMedGoogle Scholar
  136. Tsuji FI (1978)Cypridina luciferin and luciferase. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol LVII (DeLuca MA, ed). Academic Press, New York, pp 364–372Google Scholar
  137. Tsuji FI, Haneda Y, Lynch RV, Sugiyama N (1971) Luminescence cross-reactions ofPorichthys luciferin and theories on the origin of luciferin in some shallow-water fishes. Comp Biochem Physiol 40A:163–179CrossRefGoogle Scholar
  138. Tsuji FI, Barnes AT, Case JF (1972) Bioluminescence in the marine teleost,Porichthys notatus, and its induction in a non-luminous form byCypridina (Ostracod) luciferin. Nature 237:515–516CrossRefPubMedGoogle Scholar
  139. Ulitzur S, Hastings JW (1978) Myristic acid stimulation of bacterial bioluminescence in “aldehyde” mutants. Proc Natl Acad Sci 75:266–269PubMedGoogle Scholar
  140. Ulitzur S, Hastings JW (1979) Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proc Natl Acad Sci 76:265–267PubMedGoogle Scholar
  141. Ulitzur S, Reinhertz A, Hastings JW (1981) Factors affecting the cellular expression of bacterial luciferase. Arch Microbiol 129:67–71PubMedGoogle Scholar
  142. Wampler JE (1981) Earthworm bioluminescence. In: DeLuca M, McElroy WD (eds) Bioluminescence and Chemiluminescence. Academic Press, New York, p 249Google Scholar
  143. Wampler JE (1982) The bioluminescent system ofMicroscolex phosphoreus and its similarities to those of other bioluminescent earthworms (oligochaeta). Comp Biochem Physiol 71A:599–604CrossRefGoogle Scholar
  144. Wampler JE, Jamieson BGM (1980) Earthworm bioluminescence: comparative physiology and biochemistry. Comp Biochem Physiol 66B:43–50Google Scholar
  145. Wampler JE, Hori K, Lee J, Cormier MJ (1971) Structured bioluminescence. Two emitters during both thein vitro and thein vivo bioluminescence ofRenilla. Biochemistry 10:2903–2909CrossRefPubMedGoogle Scholar
  146. Ward WW, Cormier MJ (1978) Energy transfer via protein-protein interaction inRenilla bioluminescence. Photochem Photobiol 27:389–396Google Scholar
  147. Ward WW, Seliger HH (1974a) Extraction and purification of calcium-activated photoproteins. Biochemistry 13:1491–1499CrossRefPubMedGoogle Scholar
  148. Ward WW, Seliger HH (1974b) Properties of mnemiopsin and berovin, calcium-activated photoproteins. Biochemistry 13:1500–1510CrossRefPubMedGoogle Scholar
  149. Warner JA, Case JF (1980) The zoogeography and dietary induction of bioluminescence in the midshipman fish,Porichthys notatus. Biol Bull 159:231–246Google Scholar
  150. Wassink EC (1978) Luminescence in fungi. In: Herring PJ (ed) Bioluminescence in Action. Academic Press, London, pp 171–197Google Scholar
  151. Watanabe H, Hastings JW (1982) Specificities and properties of three reduced pyridine nucleotide-flavin mononucleotide reductases coupling to bacterial luciferase. Mol Cell Biochem 44:181–187CrossRefPubMedGoogle Scholar
  152. Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Ann Rev Biochem 46:573–639CrossRefPubMedGoogle Scholar
  153. Wilson T (1976) Chemiluminescence in the liquid phase: Thermal cleavage of dioxetanes. Int Rev Sci Phys Chem Ser Two 9:265–322Google Scholar
  154. Young RE, Roper CFE, Mangold K, Leisman G, Hochberg FG Jr (1979) Luminescence from non-bioluminescent tissues in oceanic cephalopods. Mar Biol 53:69–77CrossRefGoogle Scholar
  155. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theoret Biol 8:357–366Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. W. Hastings
    • 1
  1. 1.The Biological LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations