Journal of Molecular Evolution

, Volume 32, Issue 5, pp 379–395 | Cite as

Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyllb-containing prokaryoteProchlorothrix hollandica

  • Clifford W. Morden
  • Susan S. Golden
Article

Summary

Prochlorophytes similar toProchloron sp. andProchlorothrix hollandica have been suggested as possible progenitors of the plastids of green algae and land plants because they are prokaryotic organisms that possess chlorophyllb (chlb). We have sequenced theProchlorothrix genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco),rbcL andrbcS, for comparison with those of other taxa to assess the phylogenetic relationship of this species. Length differences in the large subunit polypeptide among all sequences compared occur primarily at the amino terminus, where numerous short gaps are present, and at the carboxy terminus, where sequences ofAlcaligenes eutrophus and non-chlorophyllb algae are several amino acids longer. Some domains in the small subunit polypeptide are conserved among all sequences analyzed, yet in other domains the sequences of different phylogenetic groups exhibit specific structural characteristics. Phylogenetic analyses ofrbcL andrbcS using Wagner parsimony analysis of deduced amino acid sequences indicate thatProchlorothrix is more closely related to cyanobacteria than to the green plastid lineage. The molecular phylogenies suggest that plastids originated by at least three separate primary endosymbiotic events, i.e., once each leading to green algae and land plants, to red algae, and toCyanophora paradoxa. TheProchlorothrix rubisco genes show a strong GC bias, with 68% of the third codon positions being G or C. Factors that may affect the GC content of different genomes are discussed.

Key words

rbcLS Operon Rubisco Prochlorophyte Endosymbiosis Polyphyletic plastid origin Codon usage Chlorophyllb Phycobilins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken A, Stanier R (1979) Characterization of peptidoglycan from the cyanelles ofCyanophora paradoxa. J Gen Microbiol 112:219–223Google Scholar
  2. Andersen K, Caton J (1987) Sequence analysis of theAlcaligenes eutrophus chromosomally encoded ribulose bisphosphate carboxylase large and small subunit genes and their products. J Bacteriol 169:4547–4558PubMedGoogle Scholar
  3. Aota S, Gojobori T, Ishibashi F, Maruyama T, Ikemura T (1988) Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 16:r315-r402PubMedGoogle Scholar
  4. Bayer MG, Maier TL, Gebhart UB, Schenk HEA (1990) Cyanellar ferrodoxin-NADP+-oxidoreductase ofCyanophora paradoxa is encoded by the nuclear genome and synthesized on cytoplasmatic 80S ribosomes. Curr Genet 17:265–267Google Scholar
  5. Boczar BA, Delaney TP, Cattolico RA (1989) Gene for the ribulose-1,5-bisphosphate carboxylase small subunit protein of the marine chromophyteOlisthodiscus luteus is similar to that of a chemoautotrophic bacterium. Proc Natl Acad Sci USA 86:4996–4999PubMedGoogle Scholar
  6. Breiteneder K, Seiser C, Löffelhardt W, Michalowski C, Bohnert HJ (1988) Physical map and protein gene map of cyanelle DNA from the second known isolate ofCyanophora paradoxa (Kies-strain). Curr Genet 13:199–206PubMedGoogle Scholar
  7. Bremer B, Bremer K (1989) Cladistic analysis of blue-green procaryote interrelationships and chloroplast origin based on 16S rRNA oligonucleotide catalogues. J Evol Biol 2:13–30Google Scholar
  8. Bryant DA, de Lorimier R, Lambert DH, Dubbs JM, Stirewalt VL, Stevens SE Jr, Porter RD, Tam J, Jay E (1985) Molecular cloning and nucleotide sequence of the α and β subunits of allophycocyanin from the cyanelle genome ofCyanophora paradoxa. Proc Natl Acad Sci USA 82:3242–3246PubMedGoogle Scholar
  9. Bullerjahn GS, Matthijs HCP, Mur LR, Sherman LA (1987) Chlorophyll-protein composition of the thylakoid membrane fromProchlorothrix hollandica, a prokaryote containing chlorophyllb. Eur J Biochem 168:295–300PubMedGoogle Scholar
  10. Burger-Wiersma T, Post AF (1989) Functional analysis of the photosynthetic apparatus ofProchlorothrix hollandica (Prochlorales), a chlorophyllb containing procaryote. Plant Physiol 91:770–774Google Scholar
  11. Burger-Wiersma T, Veenhuis M, Korthals HJ, Van de Wiel CCM, Mur LR (1986) A new prokaryote containing chlorophyllsa andb. Nature 320:262–264Google Scholar
  12. Burger-Wiersma T, Stal LJ, Mur LR (1989)Prochlorothrix hollandica gen. nov., sp. nov., a filamentous oxygenic photoautotrophic procaryote containing chlorophyllsa andb: assignment to Prochlorotrichaceae fam. nom. and order Prochlorales Florenzano, Balloni, and Materassi 1986, with emendation of the ordinal description. Int J Syst Bacteriol 39: 250–257Google Scholar
  13. Cavalier-Smith T (1982) The origins of plastids. Biol J Linn Soc 17:289–306Google Scholar
  14. Chan RL, Keller M, Canaday J, Weil J-H, Imbault P (1990) Eight small subunits ofEuglena ribulose 1–5 bisphosphate carboxylase are translated from a large mRNA as a polyprotein. EMBO J 9:333–338PubMedGoogle Scholar
  15. Chang SH, Hecker LI, Brum CK, Schnabel JJ, Heckman JE, Silberklang M, RajBhandary UL, Barnett EE (1981) The nucleotide sequence ofEuglena cytoplasmic phenylalanine transfer RNA. Evidence for possible classification ofEuglena among the animal rather than the plant kingdom. Nucleic Acids Res 9:3199–3204PubMedGoogle Scholar
  16. Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots inEscherichia coli. Nature 274:775–780PubMedGoogle Scholar
  17. Curtis SE, Haselkorn R (1983) Isolation and sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from the cyanobacteriumAnabaena 7120. Proc Natl Acad Sci USA 80:1835–1839Google Scholar
  18. Curtis SE, Haselkorn R (1984) Isolation, sequence and expression of two members of the 32 kd thylakoid membrane protein gene family from the cyanobacteriumAnabaena 7120. Plant Mol Biol 3:249–258Google Scholar
  19. Delihas N, Andersen J, Andresini W, Kaufman L, Lyman H (1981) The 5S ribosomal RNA ofEuglena gracilis cytoplasmic ribosomes is closely homologous to the 5S RNA of the trypanosomatid protozoa. Nucleic Acids Res 9:6627–6633PubMedGoogle Scholar
  20. Devereux JR (1989) Sequence analysis software package of the genetics computer group, version 6.0. University of Wisconsin Biotechnology Center, Madison WIGoogle Scholar
  21. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395PubMedGoogle Scholar
  22. Douglas S, Durnford DG (1989) The small subunit of ribulose-1,5-bisphosphate carboxylase is plastid-encoded in the chlorophyll c-containing algaCryptomonas Φ. Plant Mol Biol 13: 13–20PubMedGoogle Scholar
  23. Douglas S, Durnford DG, Morden CW (1990) Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyllc-containing alga,Cryptomonas Φ: evidence supporting the polyphyletic origin of plastids from purple bacteria. J Phycol 26:500–508Google Scholar
  24. Dron M, Rahire M, Rochaix J-D (1982) Sequences of the chloroplast DNA region ofChlamydomonas reinhardii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genes. J Mol Biol 162:775–793PubMedGoogle Scholar
  25. Ellis RJ (1985) Synthesis, processing, and assembly of polypeptide subunits of ribulose-1,5-bisphosphate carboxylase/ oxygenase. In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 339–347Google Scholar
  26. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  27. Fitchen JH, Knight S, Andersson I, Brändén C-I, McIntosh L (1990) Residues in three conserved regions of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase are required for quaternary structure. Proc Natl Acad Sci USA 87:5768–5772PubMedGoogle Scholar
  28. Gauly A, Kössel H (1989) Evidence for tissue-specific cytosine-methylation of plastid DNA fromZea mays. Curr Genet 15: 371–376Google Scholar
  29. Gibbs SP (1978) The chloroplasts ofEuglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889Google Scholar
  30. Gibbs SP (1981) Chloroplasts of some groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193–207PubMedGoogle Scholar
  31. Gibson JL, Tabita FR (1977) Different forms ofd-ribulose-1,5-bisphosphate carboxylase fromRhodopseudomonas sphaeroides. J Biol Chem 252:943–949PubMedGoogle Scholar
  32. Gingrich JC, Hallick RB (1985a) TheEuglena gracilis chloroplast ribulose-1,5-bisphosphate carboxylase gene I. Complete DNA sequence and analysis of the nine intervening sequences. J Biol Chem 260:16156–16161PubMedGoogle Scholar
  33. Gingrich JC, Hallick RB (1985b) TheEuglena gracilis chloroplast ribulose-1,5-bisphosphate carboxylase gene II. The spliced mRNA and its product. J Biol Chem 260:16162–16168PubMedGoogle Scholar
  34. Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592PubMedGoogle Scholar
  35. Golden SS, Brusslan J, Haselkorn R (1986) Expression of a family ofpsbA genes encoding a photosystem II polypeptide in the cyanobacteriumAnacystis nidulans R2. EMBO J 5:2789–2798PubMedGoogle Scholar
  36. Golden SS, Brusslan J, Haselkorn R (1987) Genetic engineering of the cyanobacterial chromosome. Methods Enzymol 153:215–231PubMedGoogle Scholar
  37. Goldschmidt-Clermont M, Rahire M (1986) Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase inChlamydomonas reinhardtii. J Mol Biol 191:421–432PubMedGoogle Scholar
  38. Grantham R, Gautier C, Gouy M (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res 8:1893–1912PubMedGoogle Scholar
  39. Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299PubMedGoogle Scholar
  40. Hallenbeck PL, Kaplan S (1988) Structural gene regions ofRhodobacter sphaeroides involved in CO2 fixation. Photosynth Res 19:63–71Google Scholar
  41. Hwang S-R, Tabita FR (1989) Cloning and expression of the chloroplast-encodedrbcL andrbcS genes from the marine diatomCylindrotheca sp. strain N1. Plant Mol Biol 13:69–79PubMedGoogle Scholar
  42. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34PubMedGoogle Scholar
  43. Kassavetis GA, Geiduschek EP (1982) Bacteriophage T4 late promoters: mapping 5′ ends of T4 gene 23 mRNAs. EMBO J 1:107–114PubMedGoogle Scholar
  44. Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny, and the origin of chloroplasts. J Mol Evol 31:151–160Google Scholar
  45. Knight S, Andersson I, Brändén C-I (1989) Reexamination of the three-dimensional structure of the small subunit of RuBisCo from higher plants. Science 244:702–705Google Scholar
  46. Knight S, Andersson I, Brändén C-I (1990) Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution. J Mol Biol 215:113–160PubMedGoogle Scholar
  47. Kobayashi H, Ngernprasirtsiri J, Akazawa T (1990) Transcriptional regulation and DNA methylation in plastids during transitional conversion of chloroplasts to chromoplasts. EMBO J 9:307–313PubMedGoogle Scholar
  48. Kuroiwa T, Suzuki T, Ogawa K, Kawano S (1981) The chloroplast nucleus: distribution, number, size, and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol 22:381–396Google Scholar
  49. Lambert DH, Bryant DA, Stirewalt VL, Dubbs JM, Stevens SE Jr, Porter RD (1985) Gene map for theCyanophora paradoxa cyanelle genome. J Bacteriol 164:659–664PubMedGoogle Scholar
  50. Lamppa GK, Bendich AJ (1979) Changes in chloroplast DNA levels during development of pea (Pisum sativum). Plant Physiol 64:126–130Google Scholar
  51. Lemaux PG, Grossman AR (1985) Major light-harvesting polypeptides encoded in polycistronic transcripts in a eukaryotic alga. EMBO J 4:1911–1919PubMedGoogle Scholar
  52. Lewin RA (1975a) Associations of microscopic algae with didemnid ascidians. Phycologia 14:149–152Google Scholar
  53. Lewin RA (1975b) Extraordinary pigment composition of a prokaryotic alga. Nature 256:735–737Google Scholar
  54. Lewin RA (1981)Prochloron and the theory of symbiogenesis. Ann NY Acad Sci 361:325–328PubMedGoogle Scholar
  55. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor NYGoogle Scholar
  56. Martin PG, Dowd JM, Stone SJL (1983) The study of plant phylogeny using amino acid sequences of ribulose-1,5-bisphosphate carboxylase. II The analysis of small subunit data to form phylogenetic trees. Aust J Bot 31:411–419Google Scholar
  57. Martin PG, Boulter D, Penny D (1985) Angiosperm phylogeny studied using sequences of five macromolecules. Taxon 34:393–400Google Scholar
  58. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–559PubMedGoogle Scholar
  59. Maxwell ES, Liu J, Shively JM (1986) Nucleotide sequences ofCyanophora paradoxa cellular and cyanelle-associated 5S ribosomal RNAs: the cyanelle as a potential intermediate in plastid evolution. J Mol Evol 23:300–304PubMedGoogle Scholar
  60. Meagher RB, Berry-Lowe S, Rice K (1989) Molecular evolution of the small subunit of ribulose bisphosphate carboxylase: nucleotide substitution and gene conversion. Genetics 123:845–863PubMedGoogle Scholar
  61. Miller KR, Jacob JS (1989) OnProchlorothrix. Nature 338:303–304Google Scholar
  62. Miller KR, Jacob JS, Burger-Wiersma T, Matthijs HCP (1988) Supramolecular structure of the thylakoid membrane ofProchlorothrix hollandica, a chlorophyllb-containing prokaryote. J Cell Sci 91:577–586PubMedGoogle Scholar
  63. Moon E, Kao T-H, Wu R (1987) Rice chloroplast DNA molecules are heterogeneous as revealed by DNA sequences of a cluster of genes. Nucleic Acids Res 15:611–630PubMedGoogle Scholar
  64. Morden CW, Golden SS (1989a)psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337:382–385PubMedGoogle Scholar
  65. Morden CW, Golden SS (1989b)psbA genes indicate common ancestry of prochlorophytes and chloroplasts, corrigendum. Nature 339:400Google Scholar
  66. Müller K-D, Salnikow J, Vater J (1983) Amino acid sequence of the small subunit ofd-ribulosebisphosphate carboxylase/oxygenase fromNicotiana tabacum. Biochim Biophys Acta 742:78–83Google Scholar
  67. Mulligan B, Schultes N, Chen L, Bogorad L (1984) Nucleotide sequence of a multiple-copy gene for the B protein of photosystem II of a cyanobacterium. Proc Natl Acad Sci USA 81:2693–2697Google Scholar
  68. Mulligan ME, Hawley DK, Entriken R, McClure WR (1984)escherichia coli promoter sequences predictin vitro RNA polymerase activity. Nucleic Acids Res 12:789–800PubMedGoogle Scholar
  69. Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169PubMedGoogle Scholar
  70. Nargang FL, McIntosh L, Sornerville C (1984) Nucleotide sequence of the ribulosebisphosphate carboxylase gene fromRhodospirillum rubrum. Mol Gen Genet 193:220–224Google Scholar
  71. Ngernprasirtsiri J, Kobayashi H, Akazawa T (1988a) DNA methylation occurred around lowly expressed genes of plastid DNA during tomato fruit development. Plant Physiol 88:16–20Google Scholar
  72. Ngernprasirtsiri J, Kobayashi H, Akazawa T (1988b) DNA methylation as a mechanism of transcriptional regulation in nonphotosynthetic plastids in plant cells. Proc Natl Acad Sci USA 85:4750–4754PubMedGoogle Scholar
  73. Nierzwicki-Bauer SA, Curtis SE, Haselkorn R (1984) Cotranscription of genes encoding the small and large subunits of ribulose-1,5-bisphosphate carboxylase in the cyanobacteriumAnabaena 7120. Proc Natl Acad Sci USA 81:5961–5965PubMedGoogle Scholar
  74. Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86PubMedGoogle Scholar
  75. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S-I, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwortMarchantia polymorpha chloroplast DNA. Nature 322:572–574Google Scholar
  76. Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271–278PubMedGoogle Scholar
  77. Osiewacz JD, McIntosh L (1987) Nucleotide sequence of a member of thepsbA multigene family from the unicellular cyanobacteriumSynechocystis 6803. Nucleic Acids Res 15:10585PubMedGoogle Scholar
  78. Palmer JD, Jansen RK, Michaels HJ, Chase MW, Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann Mo Bot Gard 75:1180–1206Google Scholar
  79. Poulsen C, Martin B, Svendsen IB (1979) Partial amino acid sequence of the large subunit of ribulosebisphosphate carboxylase from barley. Carlsberg Res Commun 44:191–199Google Scholar
  80. Ritland K, Clegg MT (1987) Evolutionary analysis of plant DNA sequences. Am Nat 130:S74-S100Google Scholar
  81. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225–274Google Scholar
  82. Schaefer MR, Golden SS (1989) Differential expression of members of a cyanobacterialpsbA gene family in response to light. J Bacteriol 171:3973–3981PubMedGoogle Scholar
  83. Schimper AFW (1883) Über die Entwicklung der Chlorophyll Körner und Farb-Körner. Bot Zeitung 41:105–114Google Scholar
  84. Schneider G, Knight S, Andersson I, Brändén C-I, Lindqvist Y, Lundqvist T (1990) Comparison of the crystal structures of L2 and L8S8 rubisco suggests a functional role for the small subunit. EMBO J 9:2045–2050PubMedGoogle Scholar
  85. Schneider SU, Leible MB, Yang X-P (1989) Strong homology between the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase of two species ofAcetabularia and the occurrence of unusual codon usage. Mol Gen Genet 218:445–452PubMedGoogle Scholar
  86. Schwartz RM, Dayhoff MO (1981) Chloroplast origins: inferences from protein and nucleic acid sequences. Ann NY Acad Sci 361:260–269PubMedGoogle Scholar
  87. Shinozaki K, Sugiura M (1982) The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Gene 20:91–102PubMedGoogle Scholar
  88. Shinozaki K, Yamada C, Takahata N, Sugiura M (1983) Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 80:4050–4054Google Scholar
  89. Spratt BG, Hedge PJ, te Heesen S, Edelman A, Broome-Smith JK (1986) Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41:337–342PubMedGoogle Scholar
  90. Starnes SM, Lambert DH, Maxwell ES, Stevens SE Jr, Porter RD, Shively JM (1985) Cotranscription of the large and small subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase inCyanophora paradoxa. FEMS Lett 28:165–169Google Scholar
  91. Stiekema WJ, Wimpee CF, Tobin EM (1983) Nucleotide sequence encoding the precursor of the small subunit of ribulose 1,5-bisphosphate carboxylase fromLemna gibba L. G-3. Nucleic Acids Res 11:8051–8061PubMedGoogle Scholar
  92. Swofford DL (1989) Paup version 3.0. Illinois Natural History Survey, Champaign IL.Google Scholar
  93. Tabita FR, McFadden BA (1974)d-Ribulose 1,5-diphosphate carboxylase fromRhodospirillum rubrum, II. Quaternary structure, composition, catalytic and immunological properties. J Biol Chem 249:3459–3464PubMedGoogle Scholar
  94. Ticher A, Graur D (1989) Nucleic acid composition, codon usage, and the rate of synonymous substitution in proteincoding genes. J Mol Evol 28:286–298PubMedGoogle Scholar
  95. Tumer NE, Robinson SJ, Haselkorn R (1983) Different promoters for theAnabaena glutamine synthetase gene during growth using molecular or fixed nitrogen. Nature 306:337–342Google Scholar
  96. Turner S, Burger-Wiersma T, Giovannoni SJ, Mur LR, Pace NR (1989) The relationship of a prochlorophyteProchlorothrix hollandica to green chloroplasts. Nature 337:380–382PubMedGoogle Scholar
  97. Valentin K, Zetsche K (1989) The genes of both subunits of ribulose-1,5-bisphosphate carboxylase constitute an operon on the plastome of a red alga. Curr Genet 16:203–209PubMedGoogle Scholar
  98. Viale AM, Kobayashi J, Akazawa T (1989) Expressed genes for plant-type ribulose 1,5-bisphosphate carboxylase/oxygenase in the photosynthetic bacteriumChromatium vinosum, which possesses two complete sets of the genes. J Bacteriol 171:2391–2400PubMedGoogle Scholar
  99. Volkman JK, Burger-Wiersma T, Nichols PD, Summons RE (1988) Lipids and chemotaxonomy ofProchlorothrix hollandica, a planktonic prokaryote containing chlorophyllsa andb. J Phycol 24:554–559Google Scholar
  100. Voordouw G, DeVries PA, Van den Berg WAM, DeClerck EPJ (1987) Site-directed mutagenesis of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase fromAnacystis nidulans. Eur J Biochem 163:591–598PubMedGoogle Scholar
  101. Vrba JM, Curtis SE (1989) Characterization of a four-memberpsbA gene family from the cyanobacteriumAnabaena PCC 7120. Plant Mol Biol 14:81–92Google Scholar
  102. Waksman G, Freyssinet G (1987) Nucleotide sequence of a cDNA encoding the ribulose-1,5-bisphosphate carboxylase/oxygenase from sunflower (Helianthus annuus). Nucleic Acids Res 15:1328PubMedGoogle Scholar
  103. Watson JK, Hopkins NH, Roberts JW, Steitz JA, Weiner AM (1987) Molecular biology of the gene. Benjamin/Cummings, Menlo Park, CAGoogle Scholar
  104. Whatley JM (1981) Chloroplast evolution-ancient and modern. Ann NY Acad Sci 361:154–164PubMedGoogle Scholar
  105. Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87:233–247Google Scholar
  106. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  107. Wolter FP, Fritz CC, Willmitzer L Schell J, Schreier PH (1988)rbcS genes inSolanum tuberosum: conservation of transit peptide and exon shuffling during evolution. Proc Natl Acad Sci USA 85:846–850PubMedGoogle Scholar
  108. Wolters J, Erdmann VA (1988) Cladistic analysis of ribosomal RNAs—the phylogeny of eukaryotes with respect to the endosymbiotic theory. BioSystems 21:209–214PubMedGoogle Scholar
  109. Xie Y, Wu R (1988) Nucleotide sequence of a ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene (rbcS) in rice. Nucleic Acid Res 16:7749PubMedGoogle Scholar
  110. Yamamoto N, Kano-Murakami Y, Matsuoka M, Ohashi Y, Tanaka Y (1988) Nucleotide sequence of a full length cDNA clone of ribulose bisphosphate carboxylase small subunit gene from green dark-grown pine (Pinus tunbergii) seedling. Nucleic Acids Res 16:11830PubMedGoogle Scholar
  111. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC vectors. Gene 33:103–119PubMedGoogle Scholar
  112. Yoshinaga K, Ohta T, Suzuki Y, Sugiura M (1988)Chlorella chloroplast DNA sequence containing a gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and a part of a possible gene for ²′ subunit of RNA polymerase. Plant Mol Biol 10:245–250Google Scholar
  113. Zurawski G, Perrot B, Bottomley W, Whitfeld PR (1981) The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Res 9:3251–3270PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Clifford W. Morden
    • 1
  • Susan S. Golden
    • 1
  1. 1.Department of BiologyTexas A&M UniversityCollege StationUSA

Personalised recommendations