Hyperfine Interactions

, Volume 53, Issue 1–4, pp 143–158 | Cite as

Mössbauer spectra and electronic structure of nonequilibrium Fe-Cu alloys produced by vapor quenching

  • Kenji Sumiyama
  • Yoji Nakamura
  • Kazuhide Tanaka
Invited Talks


Mössbauer spectra have been observed for nonequilibrium bcc and fcc Fe−Cu alloys sputter-deposited at several Ar gas pressures,PAr. These alloys are ferromagnetic at low temperatures and show sextet spectra. The fcc alloys which are paramagnetic at 290 K show asymmetric doublet spectra, indicating no serious segregation. In the alloys deposited at highPAr, the weak intensity ratios of the second and fifth lines of the sextet indicate a tendency of perpendicular magnetic anisotropy, while a large magnetic hyperfine field component of about 40 MA/m (500 kOe) at 4.2 K and a large quadrupole splitting component of about 0.7 mm/s at 290 K imply CuFeO2 formation. The nonequilibrium, bcc and fcc Fe−Cu, alloys are maintained below 500 K and the phase separation is detected above 550 K. X-ray photoemission spectroscopy studies of these alloys reveals individual Fe- and Cu-d bands. The concentration dependence of peak intensities and peak positions indicate that Fe and Cu electronically intermix.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.A. Thornton, Ann. Rev. Mater. Sci. 7 (1977) 239.ADSCrossRefGoogle Scholar
  2. [2]
    T.B. Massalski, J.L. Murray, L.H. Bennett, H. Barker and L. Kacprazak,Binary Alloy Phase Diagrams, Vols 1 and 2 (American Society of Metals, Ohio, 1986).Google Scholar
  3. [3]
    K. Sumiyama and Y. Nakamura, J. Iron and Steel Inst. Japan 73 (1987) 2172 (in Japanese).Google Scholar
  4. [4]
    K. Sumiyama, T. Yoshitake and Y. Nakamura, J. Phys. Soc. Japan 53 (1984) 3160.ADSCrossRefGoogle Scholar
  5. [5]
    K. Sumiyama, T. Yoshitake and Y. Nakamura, Trans. Japan Inst. Metals 26 (1985) 217.CrossRefGoogle Scholar
  6. [6]
    J. Hesse and A. Rubartsch, J. Phys. E: Sci. Instrum. 7 (1974) 526.ADSCrossRefGoogle Scholar
  7. [7]
    U. Gonser and M. Ron.Applications of Mössbauer Spectroscopy II ed. by R.L. Cohen (Academic Press, New York, 1980) p. 281.CrossRefGoogle Scholar
  8. [8]
    K. Sumiyama, K. Takemura and Y. Nakamura, Trans. Japan Inst. Metals 29 (1988) 962.CrossRefGoogle Scholar
  9. [9]
    K. Sumiyama, K. Takemura and Y. Nakamura, Japan J. Appl. Phys. 28 (1989) 361.ADSCrossRefGoogle Scholar
  10. [10]
    A.H. Muir Jr and H. Wiedersich, J. Phys. Chem. Solids 28 (1967) 65.ADSCrossRefGoogle Scholar
  11. [11]
    H. Fujiwara, J. Phys. Soc. Japan 20 (1965) 2092.ADSCrossRefGoogle Scholar
  12. [12]
    N.N. Greenwood and T.C. Gibb,Mössbauer Spectroscopy (Chapman and Hall, London, 1971) p. 234.CrossRefGoogle Scholar
  13. [13]
    K. Sumiyama, T. Yoshitake and Y. Nakamura. Acta Met. 33 (1985) 1785.CrossRefGoogle Scholar
  14. [14]
    B. Window, Phil. Mag. 26 (1972) 681.ADSCrossRefGoogle Scholar
  15. [15]
    M. Ushida, K. Tanaka, K. Sumiyama and Y. Nakamura, J. Phys. Soc. Japan 58 (1989) 1725.ADSCrossRefGoogle Scholar
  16. [16]
    S. Hüfner, G.K. Wertheim and J.H. Wernick, Phys. Rev. B8 (1973) 4511.ADSCrossRefGoogle Scholar

Copyright information

© J.C. Baltzer AG, Scientific Publishing Company 1990

Authors and Affiliations

  • Kenji Sumiyama
    • 1
  • Yoji Nakamura
    • 1
  • Kazuhide Tanaka
    • 2
  1. 1.Department of Metal Science and TechnologyKyoto UniversityKyotoJapan
  2. 2.Department of Materials Science and EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations