Communications in Mathematical Physics

, Volume 148, Issue 2, pp 345–352 | Cite as

Selection rules for topology change

  • G. W. Gibbons
  • S. W. Hawking
Article

Abstract

It is shown that there are restrictions on the possible changes of topology of space sections of the universe if this topology change takes place in a compact region which has a Lorentzian metric and spinor structure. In particular, it is impossible to create a single wormhole or attach a single handle to a spacetime but it is kinematically possible to create such wormholes in pairs. Another way of saying this is that there is a ℤ2 invariant for a closed oriented 3-manifold Σ which determines whether Σ can be the spacelike boundary of a compact manifoldM which admits a Lorentzian metric and a spinor structure. We evaluate this invariant in terms of the homology groups of Σ and find that it is the mod2 Kervaire semi-characteristic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morris, M.S., Thorne, K.S., Yurtsever, U.: Phys. Rev. Lett.61, 1446–1449 (1988)Google Scholar
  2. 2.
    Novikov, I.D.: Zh. Eksp. Teor. Fiz.95, 769 (1989)Google Scholar
  3. 3.
    Frolov, V.P., Novikov, I.G.: Phys. Rev. D42, 1057–1065 (1990)Google Scholar
  4. 4.
    Geroch, R.P.: J. Math. Phys.8, 782–786 (1968)Google Scholar
  5. 5.
    Milnor, J.: L'Enseignement Math.9, 198–203 (1963)Google Scholar
  6. 6.
    Reinhart, B.L.: Topology2, 173–177 (1963)Google Scholar
  7. 7.
    Yodzis, P.: Commun. Math. Phys.26, 39 (1972); Gen. Relativ. Gravit.4, 299 (1973)Google Scholar
  8. 8.
    Sorkin, R.: Phys. Rev. D33, 978–982 (1982)Google Scholar
  9. 9.
    Bichteler, K.: J. Math. Phys.6, 813–815 (1968)Google Scholar
  10. 10.
    Geroch, R.P.: J. Math. Phys.9, 1739–1744 (1968);11, 343–347 (1970)Google Scholar
  11. 11.
    Gibbons, G.W.: Nucl. Phys. B271, 479 (1986); Sanchez, N., Whiting, B.: Nucl. Phys. B283, 605–623 (1987)Google Scholar
  12. 12.
    Kirby, R.: Topology of 4-manifolds. Lecture Notes in Mathematics. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  13. 13.
    Hawking, S.W., Pope, C.N.: Phys. Letts.73B, 42–44 (1978)Google Scholar
  14. 14.
    Killingback, T.P., Rees, E. G.: Class. Quantum. Grav.2, 433–438 (1985)Google Scholar
  15. 15.
    Whiston, G.S.: Gen. Relativ. Gravit.6, 463–475 (1975)Google Scholar
  16. 16.
    Back, A., Freund, P.G.O., Forger, M.: Phys. Letts.77B, 181–184 (1978)Google Scholar
  17. 17.
    Avis, S.J., Isham, C.J.: Commun. Math. Phys.64, 269–278 (1980)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. W. Gibbons
    • 1
  • S. W. Hawking
    • 1
  1. 1.D.A.M.T.P.CambridgeUK

Personalised recommendations