Communications in Mathematical Physics

, Volume 148, Issue 2, pp 345–352 | Cite as

Selection rules for topology change

  • G. W. Gibbons
  • S. W. Hawking


It is shown that there are restrictions on the possible changes of topology of space sections of the universe if this topology change takes place in a compact region which has a Lorentzian metric and spinor structure. In particular, it is impossible to create a single wormhole or attach a single handle to a spacetime but it is kinematically possible to create such wormholes in pairs. Another way of saying this is that there is a ℤ2 invariant for a closed oriented 3-manifold Σ which determines whether Σ can be the spacelike boundary of a compact manifoldM which admits a Lorentzian metric and a spinor structure. We evaluate this invariant in terms of the homology groups of Σ and find that it is the mod2 Kervaire semi-characteristic.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morris, M.S., Thorne, K.S., Yurtsever, U.: Phys. Rev. Lett.61, 1446–1449 (1988)Google Scholar
  2. 2.
    Novikov, I.D.: Zh. Eksp. Teor. Fiz.95, 769 (1989)Google Scholar
  3. 3.
    Frolov, V.P., Novikov, I.G.: Phys. Rev. D42, 1057–1065 (1990)Google Scholar
  4. 4.
    Geroch, R.P.: J. Math. Phys.8, 782–786 (1968)Google Scholar
  5. 5.
    Milnor, J.: L'Enseignement Math.9, 198–203 (1963)Google Scholar
  6. 6.
    Reinhart, B.L.: Topology2, 173–177 (1963)Google Scholar
  7. 7.
    Yodzis, P.: Commun. Math. Phys.26, 39 (1972); Gen. Relativ. Gravit.4, 299 (1973)Google Scholar
  8. 8.
    Sorkin, R.: Phys. Rev. D33, 978–982 (1982)Google Scholar
  9. 9.
    Bichteler, K.: J. Math. Phys.6, 813–815 (1968)Google Scholar
  10. 10.
    Geroch, R.P.: J. Math. Phys.9, 1739–1744 (1968);11, 343–347 (1970)Google Scholar
  11. 11.
    Gibbons, G.W.: Nucl. Phys. B271, 479 (1986); Sanchez, N., Whiting, B.: Nucl. Phys. B283, 605–623 (1987)Google Scholar
  12. 12.
    Kirby, R.: Topology of 4-manifolds. Lecture Notes in Mathematics. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  13. 13.
    Hawking, S.W., Pope, C.N.: Phys. Letts.73B, 42–44 (1978)Google Scholar
  14. 14.
    Killingback, T.P., Rees, E. G.: Class. Quantum. Grav.2, 433–438 (1985)Google Scholar
  15. 15.
    Whiston, G.S.: Gen. Relativ. Gravit.6, 463–475 (1975)Google Scholar
  16. 16.
    Back, A., Freund, P.G.O., Forger, M.: Phys. Letts.77B, 181–184 (1978)Google Scholar
  17. 17.
    Avis, S.J., Isham, C.J.: Commun. Math. Phys.64, 269–278 (1980)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. W. Gibbons
    • 1
  • S. W. Hawking
    • 1
  1. 1.D.A.M.T.P.CambridgeUK

Personalised recommendations