Communications in Mathematical Physics

, Volume 148, Issue 2, pp 283–308

The spinor heat kernel in maximally symmetric spaces

  • Roberto Camporesi
Article

Abstract

The heat kernelK(x, x′, t) of the iterated Dirac operator on anN-dimensional simply connected maximally symmetric Riemannian manifold is calculated. On the odd-dimesional hyperbolic spacesK is a Minakshisundaram-DeWitt expansion which terminates to the coefficientaN−1)/2 and is exact. On the odd spheres the heat kernel may be written as an image sum of WKB kernels, each term corresponding to a classical path (geodesic). In the even dimensional case the WKB approximation is not exact, but a closed form ofK is derived both in terms of (spherical) eigenfunctions and of a “sum over classical paths.” The spinor Plancherel measure μ(λ) and ζ function in the hyperbolic case are also calculated. A simple relation between the analytic structure of μ onHN and the degeneracies of the Dirac operator onSN is found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, B.: Nucl. Phys.B226, 228 (1983)Google Scholar
  2. 2.
    Allen, B., Jacobson, T.: Commun. Math. Phys.103, 669 (1986)Google Scholar
  3. 3.
    Allen, B., Lütken, C.A.: Commun. Math. Phys.106, 201 (1986)Google Scholar
  4. 4.
    Altaie, M.B., Dowker, J.S.: Phys. Rev.D17, 417 (1978)Google Scholar
  5. 5.
    Anderson, A., Camporesi, R.: Commun. Math. Phys.130, 61 (1990)Google Scholar
  6. 6.
    Birrell, N.D., Davies, P.C.W.: Quantum fields in curved spaces. Cambridge: Cambridge Univ. Press 1982Google Scholar
  7. 7.
    Camporesi, R.: Phys. Rep.196, (1990)Google Scholar
  8. 8.
    Camporesi, R.: Class. Quant. Grav.8, 529 (1991)Google Scholar
  9. 9.
    Camporesi, R.: Phys. Rev.D43, 3958 (1991)Google Scholar
  10. 10.
    Camporesi, R., Higuchi, A.: in preparationGoogle Scholar
  11. 11.
    Candelas, P., Raine, D.J.: Phys. Rev.D12, 965 (1975)Google Scholar
  12. 12.
    Candelas, P., Weinberg, S.: Nucl. Phys.B237, 397 (1984)Google Scholar
  13. 13.
    Dowker, J.S., Critchley, R.: Phys. Rev.D13, 224 (1976)Google Scholar
  14. 14.
    Destri, C., Orzalesi, C.A., Rossi, P.: Ann. Phys.147, 321 (1983)Google Scholar
  15. 15.
    DeWitt, B.S.: Dynamical theory of groups and fields. New York: Gordon and Breach 1965Google Scholar
  16. 16.
    Düsedau, D.W., Freedman, D.Z.: Phys. Rev.D33, 389 (1986)Google Scholar
  17. 17.
    Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. (Bateman Manuscript Project) vol. I. New York: Mac Graw Hill 1953Google Scholar
  18. 18.
    Gasper, G.: In Fractional Calculus and its Applications. Ross, B. (ed.) Berlin, Heidelberg, New York: Springer 1975, p. 207Google Scholar
  19. 19.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. New York: Academic Press 1980Google Scholar
  20. 20.
    Helgason, S.: Groups and Geometric Analysis. New York: Academic Press 1984Google Scholar
  21. 21.
    Helgason, S.: Asterisque (hors serie) (1985) 151Google Scholar
  22. 22.
    Helgason, S.: private communicationGoogle Scholar
  23. 23.
    Higuchi, A.: private discussionGoogle Scholar
  24. 24.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I and II. New York: Interscience 1969Google Scholar
  25. 25.
    Luke, Y.L.: The Special Functions and their Approximations, vol. I. New York: Academic Press 1969Google Scholar
  26. 26.
    Minakshisundaram, S., Pleijel, A.: Can. J. Math.1, 320 (1949)Google Scholar
  27. 27.
    Oldham, K.B., Spanier, J.: The fractional calculus. New York: Academic Press 1974Google Scholar
  28. 28.
    Wald, R.M.: Commun. Math. Phys.70, 221 (1979)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Roberto Camporesi
    • 1
  1. 1.Theoretical Physics Institute, Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations