Communications in Mathematical Physics

, Volume 148, Issue 2, pp 283–308

The spinor heat kernel in maximally symmetric spaces

  • Roberto Camporesi


The heat kernelK(x, x′, t) of the iterated Dirac operator on anN-dimensional simply connected maximally symmetric Riemannian manifold is calculated. On the odd-dimesional hyperbolic spacesK is a Minakshisundaram-DeWitt expansion which terminates to the coefficientaN−1)/2 and is exact. On the odd spheres the heat kernel may be written as an image sum of WKB kernels, each term corresponding to a classical path (geodesic). In the even dimensional case the WKB approximation is not exact, but a closed form ofK is derived both in terms of (spherical) eigenfunctions and of a “sum over classical paths.” The spinor Plancherel measure μ(λ) and ζ function in the hyperbolic case are also calculated. A simple relation between the analytic structure of μ onHN and the degeneracies of the Dirac operator onSN is found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, B.: Nucl. Phys.B226, 228 (1983)Google Scholar
  2. 2.
    Allen, B., Jacobson, T.: Commun. Math. Phys.103, 669 (1986)Google Scholar
  3. 3.
    Allen, B., Lütken, C.A.: Commun. Math. Phys.106, 201 (1986)Google Scholar
  4. 4.
    Altaie, M.B., Dowker, J.S.: Phys. Rev.D17, 417 (1978)Google Scholar
  5. 5.
    Anderson, A., Camporesi, R.: Commun. Math. Phys.130, 61 (1990)Google Scholar
  6. 6.
    Birrell, N.D., Davies, P.C.W.: Quantum fields in curved spaces. Cambridge: Cambridge Univ. Press 1982Google Scholar
  7. 7.
    Camporesi, R.: Phys. Rep.196, (1990)Google Scholar
  8. 8.
    Camporesi, R.: Class. Quant. Grav.8, 529 (1991)Google Scholar
  9. 9.
    Camporesi, R.: Phys. Rev.D43, 3958 (1991)Google Scholar
  10. 10.
    Camporesi, R., Higuchi, A.: in preparationGoogle Scholar
  11. 11.
    Candelas, P., Raine, D.J.: Phys. Rev.D12, 965 (1975)Google Scholar
  12. 12.
    Candelas, P., Weinberg, S.: Nucl. Phys.B237, 397 (1984)Google Scholar
  13. 13.
    Dowker, J.S., Critchley, R.: Phys. Rev.D13, 224 (1976)Google Scholar
  14. 14.
    Destri, C., Orzalesi, C.A., Rossi, P.: Ann. Phys.147, 321 (1983)Google Scholar
  15. 15.
    DeWitt, B.S.: Dynamical theory of groups and fields. New York: Gordon and Breach 1965Google Scholar
  16. 16.
    Düsedau, D.W., Freedman, D.Z.: Phys. Rev.D33, 389 (1986)Google Scholar
  17. 17.
    Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. (Bateman Manuscript Project) vol. I. New York: Mac Graw Hill 1953Google Scholar
  18. 18.
    Gasper, G.: In Fractional Calculus and its Applications. Ross, B. (ed.) Berlin, Heidelberg, New York: Springer 1975, p. 207Google Scholar
  19. 19.
    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. New York: Academic Press 1980Google Scholar
  20. 20.
    Helgason, S.: Groups and Geometric Analysis. New York: Academic Press 1984Google Scholar
  21. 21.
    Helgason, S.: Asterisque (hors serie) (1985) 151Google Scholar
  22. 22.
    Helgason, S.: private communicationGoogle Scholar
  23. 23.
    Higuchi, A.: private discussionGoogle Scholar
  24. 24.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I and II. New York: Interscience 1969Google Scholar
  25. 25.
    Luke, Y.L.: The Special Functions and their Approximations, vol. I. New York: Academic Press 1969Google Scholar
  26. 26.
    Minakshisundaram, S., Pleijel, A.: Can. J. Math.1, 320 (1949)Google Scholar
  27. 27.
    Oldham, K.B., Spanier, J.: The fractional calculus. New York: Academic Press 1974Google Scholar
  28. 28.
    Wald, R.M.: Commun. Math. Phys.70, 221 (1979)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Roberto Camporesi
    • 1
  1. 1.Theoretical Physics Institute, Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations