Advertisement

Inventiones mathematicae

, Volume 108, Issue 1, pp 653–665 | Cite as

On the λ-adic representations associated to some simple Shimura varieties

  • Robert E. Kottwitz
Article

Keywords

Shimura Variety Simple Shimura Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-W] Borel, A. and Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Ann. of Math. Studies 94. Princeton University Press, 1980Google Scholar
  2. [C] Clozel, L.: The fundamental lemma for stable base change. Duke Math. J.61, 255–302 (1990)Google Scholar
  3. [C-D] Clozel, L. and Delorme, P.: Pseudo-coefficients et cohomologie des groupes de Lie réductifs réels. C.R. Acad. Sci. Paris Sér. I. Math.300, 385–387 (1985)Google Scholar
  4. [D1] Deligne, P.: Variétés de Shimura, in Automorphic Forms, Representations andL-functions. Proc. Sympos. Pure Math.33, part 2, 1979, pp. 247–290Google Scholar
  5. [D2] Deligne, P.: La conjecture de Weil. II, Publ. Math. IHES52, 313–428 (1980)Google Scholar
  6. [K1] Kottwitz, R.: Sign changes in harmonic analysis on reductive groups. Trans. A.M.S.278, 289–297 (1983)Google Scholar
  7. [K2] Kottwitz, R.: Stable trace formula: cuspidal tempered terms. Duke, Math. J.51, 611–650 (1984)Google Scholar
  8. [K3] Kottwitz, R.: Shimura varieties and twisted orbital integrals. Math. Ann.269, 287–300 (1984)Google Scholar
  9. [K4] Kottwitz, R.: Stable trace formula: elliptic singular terms. Math. Ann.275, 365–399 (1986)Google Scholar
  10. [K5] Kottwitz, R.: Shimura varieties and λ-adic representations. In: Automorphic Forms, Shimura Varieties andL-functions, part 1. Perspectives in Mathematics 10. Academic Press, 1990, pp. 161–209Google Scholar
  11. [K6] Kottwitz, R.: Points on some Shimura varieties over finite fields, to appear in J.A.M.S.Google Scholar
  12. [La] Labesse, J.-P.: Fonctions élémentaires et lemme fondamental pour le changement de base stable. Duke Math. J.61, 519–530 (1990)Google Scholar
  13. [L1] Langlands, R.P.: Shimura varieties and the Selberg trace formula. Can. J. Math.29, 1292–1299 (1977)Google Scholar
  14. [L2] Langlands, R.P.: Automorphic representations, Shimura varieties, and motives. In: Automorphic Forms, Representations, andL-functions. Proc. Sympos. Pure Math.33, part 2, 1979, pp. 205–246Google Scholar
  15. [L3] Langlands, R.P.: On the zeta-functions of some simple Shimura varieties. Can. J. Math.31, 1121–1216 (1979)Google Scholar
  16. [L4] Langlands, R.P.: Les débuts d'une formule des traces stable. Publ. Math. Univ. Paris VII, vol. 13, Paris, 1983Google Scholar
  17. [R-Z] Rapoport, M. and Zink, T.: Über die lokale Zetafunktion von Shimuravarietäten. Invent. math.68, 21–101 (1982)Google Scholar
  18. [S] Shelstad, D.: Orbital integrals, endoscopic groups andL-indistinguishability for real groups. In: Journées Automorphes. Publ. Math. Univ. Paris VII, vol. 15, Paris, 1983Google Scholar
  19. [Sh] Shimura, G.: Moduli of abelian varieties and number theory. In: Algebraic Groups and Discontinuous Subgroups. Proc. Sympos. Pure Math.9, 312–332 (1966)Google Scholar
  20. [V-Z] Vogan D. and Zuckerman, G.: Unitary representations with non-zero cohomology. Compositio Math.53, 51–90 (1984)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Robert E. Kottwitz
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations