Inventiones mathematicae

, Volume 108, Issue 1, pp 575–633 | Cite as

An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities

  • Herbert S. Wilf
  • Doron Zeilberger
Article

Summary

It is shown that every ‘proper-hypergeometric’ multisum/integral identity, orq-identity, with a fixed number of summations and/or integration signs, possesses a short, computer-constructible proof. We give a fast algorithm for finding such proofs. Most of the identities that involve the classical special functions of mathematical physics are readily reducible to the kind of identities treated here. We give many examples of the method, including computer-generated proofs of identities of Mehta-Dyson, Selberg, Hille-Hardy,q-Saalschütz, and others. The prospect of using the method for proving multivariate identities that involve an arbitrary number of summations/integrations is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AZ] Almkvist, G., Zeilberger, D.: The method of differentiating under the integral sign, (The Maple program that implements the algorithm appeared in ACM SIGSAM Bulletin25, No. 3 (July 1991), 14–17), J. Symbolic Computation10, 571–591 (1990)Google Scholar
  2. [Ande] Anderson, G.: Letter to R. AskeyGoogle Scholar
  3. [Ande1] Anderson, G.: The evaluation of Selberg sums, C.R. Acad. Sci. (Ser. I: Math.)311, 469–472 (1990)Google Scholar
  4. [An] Andrews, G.: The Theory of Partitions, Encyclopedia of Mathematics and Its Applications (G.C. Rota, Editor), vol. 2, Addison Wesley, Reading, 1976Google Scholar
  5. [An1] Andrews, G.: q-Series: Their Development and Applications in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS series, vol. 66, Am. Math. Soc., Providence, 1986Google Scholar
  6. [Ao] Aomoto, K.: Jacobi polynomials associated with Selberg's integrals. SIAM J. Math. Anal.18, 545–549 (1987)Google Scholar
  7. [As] Askey, R.A.: Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, vol. 21, SIAM, 1975Google Scholar
  8. [As1] Askey, R.A.: Lost and found mathematics, MAA-AAAS invited address, Annual meeting, Columbus, OH, Aug. 1990Google Scholar
  9. [As2] Askey, R.A.: Ramanujan and important formulas, Srinivasa Ramanujan, a tribute (N.R. Nagarajan and T. Soundararajan, eds.), Macmillan, India, Madras, 1988Google Scholar
  10. [As3] Askey, R.A.: An elementary evaluation of a beta type integral, Indian J. Pure Appl. Math.14, 892–895 (1983)Google Scholar
  11. [AsWi] Askey, R., Wilson, J.A.: Some basic hypergeometric polynomials that generalize the Jacobi polynomials, Memoirs Amer. Math. Soc.319 (1985)Google Scholar
  12. [Ba] Bailey, W.N.: Generalized Hypergeometric Series, Cambridge Math. Tract No. 32, (Reprinted: Hafner, New York, 1964), Cambr. Univ. Press, London and New York, 1935Google Scholar
  13. [Ba1] Bailey, W.N.: The generating function for Jacobi polynomials, J. London Math. Soc.13, 243–246 (1938)Google Scholar
  14. [BFH] Benson, D., Feit, W., Howe, R.: Finite linear groups, the Commodore 64, Euler, and Sylvester, Amer. Math. Monthly93, 717–720 (1986)Google Scholar
  15. [Be] Bernstein, I.(J.)N: Modules over rings of differential operators, a study of the fundamental solutions of equations with constant coefficients, Funct. Anal. and Appl.5, 1–16 (1971)Google Scholar
  16. [Bj] Björk, J.E.: Rings of Differential Operators, North-Holland, Amsterdam, 1979.Google Scholar
  17. [Bo] Borel, A. et al.: Algebraic D-Modules, Academic Press, Boston, 1987.Google Scholar
  18. [Ca] Cayley, A.: Collected Papers, vol. 12, pp. 217–219Google Scholar
  19. [Co] Comtet, L.: Advanced Combinatorics, Reidel, Dordrecht 1974Google Scholar
  20. [Cal] Carlitz, L.: Summations of products of binomial coefficients, Amer. Math. Monthly75, 906–908 (1968)Google Scholar
  21. [Ca2] Carlitz, L.: A binomial identity arising from a sorting problem, SIAM Review6, 20–30 (1964)Google Scholar
  22. [deB] de Branges, L.: A proof of the Bieberbach conjecture, Acta Math.154, 137–152 (1985)Google Scholar
  23. [Eg] Egorychev, G.P.: Integral representation and the Computation of Combinatorial Sums, vol. 59, AMS, Providence, 1984Google Scholar
  24. [Eh] Ehlers, F.: The Weyl algebra, in [Bo]—Google Scholar
  25. [Ek1] Ekhad, S.B.: Short proofs of two hypergeometric summation formulas of Karlsson, Proc. Amer. Math. Soc.107, 1143–1144 (1989)Google Scholar
  26. [Ek2] Ekhad, S.B.: A very short proof of Dixon's theorem, J. Comb. Theory, Ser. A54, 141–142 (1990)Google Scholar
  27. [Ek3] Ekhad, S.B.: A one-line proof of the Habsieger-ZeilbergerG 2 constant term identity, J. Comput. Appl. Math.34, 133–134 (1991)Google Scholar
  28. [Ek4] Ekhad, S.B.: Short proof of a strange combinatorial identity conjectured by Gosper, Discrete Math.90, 319–320 (1991)Google Scholar
  29. [Ek5] Ekhad, S.B.: A Short, elementary, and easy, WZ proof of the Askey-Gasper inequality that was used by de Branges in his proof of the Bieberbach conjecture, J. Theor. Comp. Sci (to appear)Google Scholar
  30. [ET] Ekhad, S.B. Tre, S.: A purely, verification proof of the first Rogers-Ramanujan identity. J. Comb. Theory Ser. A54, 309–311 (1990)Google Scholar
  31. [Er] Erdélyi, A. et al.: The Higher Transcendental Functions, The Bateman Manuscript Project, 3 vols. McGraw-Hill, New York, 1953Google Scholar
  32. [Ev] Evans, R.: Identities for products of Gauss sums over finite fields, Enseign. Math.27, 197–209 (1981)Google Scholar
  33. [EZ] Ekhad, S.B., Zeilberger, D.: A 21 st century proof of Dougall's hypergeometric sum identity, J. Math. Anal. Appl.147, 610–611 (1990)Google Scholar
  34. [Fa] Fasenmyer, M.C.: Some generalized hypergeometric polynomials, Bull. Amer. Math. Soc.53, 806–812 (1947)Google Scholar
  35. [Fo] Foata, D.: Combinatoire des identites sur les polynomes orthogonaux, Proc. ICM 83, Varsovie, 1541–1553 (1983)Google Scholar
  36. [Fo1] Foata, D.: A combinatorial proof of the Mehler formula, J. Comb. Theory, ser. A24, 250–259 (1978)Google Scholar
  37. [FG] Foata, D., Garsia, A.: A combinatorial approach to the Mehler formulas for Hermite polynomials, Relations between combinatorics and other branches of mathematics, Columbus, 1978, Amer. Math. Soc., Providence, 1979, pp. 163–179Google Scholar
  38. [FS] Foata, D, Strehl, V.: Une extension multilinéaire de la formule d'Erdélyi pour les produits de fonctions hypergéometriques confluentes, C.R. Acad. Sc. Paris293, 517–520 (1981)Google Scholar
  39. [GaGo] Garvan, F., Gonnet, G., Macdonald's constant term conjectures for the exceptional root systems, Bulletin (new series) of the Amer. Math. Soc.24, 343–347 (1991)Google Scholar
  40. [GaRa] Gasper, G., Rahman, M.: Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, Cambridge Univ. Press, Cambridge, 1990Google Scholar
  41. [GS] Gessel, I., Stanton, D.: Short proofs of Saalschütz' and Dixon's theorems, J. Combin. Theory A38, 87–90 (1985)Google Scholar
  42. [Goo] Good, I.J.: Short proof of a conjecture by Dyson, J. Math. Phys.11, 1884 (1970)Google Scholar
  43. [Gos] Gosper, R.W., Jr.: Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci USA75, 40–42 (1978)Google Scholar
  44. [GKP] Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, Addison-Wesley, Reading, MA, 1989Google Scholar
  45. [Gu] Gustafson, R.A.: A generalization of Selberg's beta integral, Bull. (new series) Amer. Math. Soc.22, 97–105 (1990)Google Scholar
  46. [GuMi] Gustafson, R.A., Milne, S.C.: Schur functions, Good's identity, and hypergeometric series well poised inSU(n), Adv. in Math.57, 209–225 (1985)Google Scholar
  47. [Ho] Holman, W.J. III: Summation theorems for hypergeometric series inU(n), SIAM J. Math. Anal.11, 523–532 (1980)Google Scholar
  48. [ISV] Ismail, M., Stanton, D., Viennot, G.: The combinatorics ofq-Hermite polynomials and the Askey-Wilson integral, Europ. J. Combin.8, 379–392 (1987)Google Scholar
  49. [K] Koornwinder, T.H.: Handling hypergeometric series in Maple, Orthogonal Polynomials and their Applications (C. Brezinski, L. Gori and A. Ronveaux, eds.), IMACS Annals on computing and applied mathematics, Baltzer, 1991, pp. 73–80Google Scholar
  50. [L] Leonard Lipshitz: The diagonal of a D-finite power series is D-finite, J. Algebra13, 373–378 (1988)Google Scholar
  51. [Ma] Macdonald, I.G.: Some conjectures for root systems, SIAM J. Math. Anal.13, 988–1007 (1982)Google Scholar
  52. [Mi] Milne, S.C.: Aq-analog of the Gauss summation theorem for hypergeometric series inU(n), Adv. Math.72, 59–131 (1988)Google Scholar
  53. [O] Opdam, E.: Some applications of hypergeometric shift operators, Invent. Math.98, 1–18 (1989)Google Scholar
  54. [R] Rainville, E.D.: Special Functions (Reprinted: Chelsea, Bronx, NY, 1971)., Macmillan, New York, 1960Google Scholar
  55. [Ri] Richards, D.St.P.: Analogs and extensions of Selberg's integral,q-Series and Partitions, IMA volumes in Mathematics and its Applications (D. Stanton, ed.), vol. 18, Springer, New York, 1989Google Scholar
  56. [Se] Selberg, A.: Bemerkninger om et multipelt integral, Norsk Math. Tidsskr.26, 71–78 (1944)Google Scholar
  57. [Sta] Stanton, D.: A short proof of a generating function for Jacobi polynomials, Proc. Amer. Math. Soc.80, 398–400 (1980)Google Scholar
  58. [St] Strehl, V.: Zykel-Enumeration bei Local-Strukturien Funktionen, Universität Erlangen-Nürnberg, Germany, 1990Google Scholar
  59. [SzVa] Szondy and Varga: A conjectured double sum, preprintGoogle Scholar
  60. [V] Verbaeten, P.: The automatic construction of pure recurrence relations, Proc. EUROSAM '74, ACM-SIGSAM Bulletin8, 96–98 (1974)Google Scholar
  61. [WZ1] Wilf, H.S., Zeilberger, D.: Towards computerized proofs of identities, Bull. Amer. Math. Soc.23, 77–83 (1990)Google Scholar
  62. [WZ2] Wilf, H.S., Zeilberger, D.: Rational functions certify combinatorial identities, J. Amer. Math. Soc.3, 147–158 (1990)Google Scholar
  63. [Z0] Zeilberger, D.: Sister Celine's technique and its generalizations, J. Math. Anal. Appl.85, 114–145 (1982)Google Scholar
  64. [Z1] Zeilberger, D.: A holonomic systems approach to special functions identities, J. of Computational and Applied Math.32, 321–368 (1990)Google Scholar
  65. [Z2] Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities, Discrete Math.80, 207–211 (1990)Google Scholar
  66. [Z3] Zeilberger, D.: The method of creative telescoping, J. Symbolic Computation25, 4–13 (1991)Google Scholar
  67. [Z4] Zeilberger, D.: Closed form (pun intended!), Special volume in memory of Emil Grosswald (M. Knopp, ed.), Contemporary Mathematics (to appear)Google Scholar
  68. [Z5] Zeilberger, D.: The method of creative telescoping forq-series, in preparationGoogle Scholar
  69. [Z6] Zeilberger, D.: Aq-Foata proof of theq-Saalschütz identity, European J. Combinatorics8, 461–463 (1987)Google Scholar
  70. [Z7] Zeilberger, D.: Towards a WZ evaluation of the Mehta integral (submitted)Google Scholar
  71. [ZB] Zeilberger, D., Bressoud, D.: A proof of Andrews'q-Dyson conjecture, Discrete Math.54, 201–224 (1985)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Herbert S. Wilf
    • 1
    • 2
  • Doron Zeilberger
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations