Inventiones mathematicae

, Volume 108, Issue 1, pp 549–574

A sharp form of Nevanlinna's second fundamental theorem

  • A. Hinkkanen


Letf be meromorphic in the plane. We find a sharp upper bound for the error term
$$S(r,f) = m(r,f) + \sum\limits_{i = 1}^q {m(r,a_i ,f)} + N_1 (r,f) - 2T(r,f)$$
in Nevanlinna's second fundamental theorem. For any positive increasing functions ϕ(t)/t andp(t) with\(\int\limits_1^\infty {dt/\varphi (t)}< \infty \) and\(\int\limits_1^\infty {dt/p(t)} = \infty \) we have
$$S\left( {r,f} \right) \leqq \log ^ + \left\{ {\frac{{\varphi \left( {T\left( {r,f} \right)} \right)}}{{p\left( r \right)}}} \right\} + O\left( 1 \right)$$
asr→∞ outside a setE with\(\int\limits_E {dr/p(r)}< \infty \). Further if ψ(t)/t is positive and increasing and\(\int\limits_1^\infty {dt/} \psi (t) = \infty \) then there is an entiref such thatS(r, f)≧logψ(T(r, f)) outside a set of finite linear measure. We also prove analogous results for functions meromorphic in a disk.

AMS (1991) Classification

Primary 30D35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel, E.: Sur les zéros des fonctions entières. Acta Math.20, 357–396 (1896–1897)Google Scholar
  2. 2.
    Gol'dberg, A.A., Grinshtein, V.A.: The logarithmic derivative of a meromorphic function (Russian): Mat. Zametki19, 525–530 (1976); English transl. in Math. Notes19, 320–323 (1976)Google Scholar
  3. 3.
    Hayman, W.K.: Meromorphic functions. Oxford: Clarendon Press 1964Google Scholar
  4. 4.
    Lang, S.: Transcendental numbers and diophantine approximations. Bull. Am. Math. Soc.77, 635–677 (1971)Google Scholar
  5. 5.
    Lang, S.: The error term in Nevanlinna theory, Duke Math. J.56, 193–218 (1988).Google Scholar
  6. 6.
    Lang, S., Cherry, W.: Topics in Nevanlinna theory III, Lect. Notes Math. vol. 1433. New York: Springer, 1990Google Scholar
  7. 7.
    Miles, J.: A sharp form of the lemma on the logarithmic derivative, to appear in J. London Math. Soc.Google Scholar
  8. 8.
    Nevanlinna, R.: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris, 1929. Reprinted by Chelsea, New York, 1974Google Scholar
  9. 9.
    Nevanlinna, R.: Remarques sur les fonctions monotones, Bull. Sci. Math.55, 140–144 (1931)Google Scholar
  10. 10.
    Osgood, C.F.: Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory21, 347–389 (1985)Google Scholar
  11. 11.
    Roth, K.F.: Rational approximations to algebraic numbers, Mathematika2, 1–20 (1955)Google Scholar
  12. 12.
    Vojta, P.: Diophantine approximations and value distribution theory, Lect. Notes Math. vol. 1239. New York: Springer, 1987Google Scholar
  13. 13.
    Wong, P.: On the second main theorem in Nevanlinna theory, Amer. J. Math.111, 549–583 (1989)Google Scholar
  14. 14.
    Ye, Z.: On Nevanlinna's error terms, Duke Math. J.64, 243–260 (1991)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Hinkkanen
    • 1
  1. 1.Department of MathematicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations