Inventiones mathematicae

, Volume 108, Issue 1, pp 549–574

# A sharp form of Nevanlinna's second fundamental theorem

• A. Hinkkanen
Article

## Summary

Letf be meromorphic in the plane. We find a sharp upper bound for the error term
$$S(r,f) = m(r,f) + \sum\limits_{i = 1}^q {m(r,a_i ,f)} + N_1 (r,f) - 2T(r,f)$$
in Nevanlinna's second fundamental theorem. For any positive increasing functions ϕ(t)/t andp(t) with$$\int\limits_1^\infty {dt/\varphi (t)}< \infty$$ and$$\int\limits_1^\infty {dt/p(t)} = \infty$$ we have
$$S\left( {r,f} \right) \leqq \log ^ + \left\{ {\frac{{\varphi \left( {T\left( {r,f} \right)} \right)}}{{p\left( r \right)}}} \right\} + O\left( 1 \right)$$
asr→∞ outside a setE with$$\int\limits_E {dr/p(r)}< \infty$$. Further if ψ(t)/t is positive and increasing and$$\int\limits_1^\infty {dt/} \psi (t) = \infty$$ then there is an entiref such thatS(r, f)≧logψ(T(r, f)) outside a set of finite linear measure. We also prove analogous results for functions meromorphic in a disk.

Primary 30D35

## Preview

### References

1. 1.
Borel, E.: Sur les zéros des fonctions entières. Acta Math.20, 357–396 (1896–1897)Google Scholar
2. 2.
Gol'dberg, A.A., Grinshtein, V.A.: The logarithmic derivative of a meromorphic function (Russian): Mat. Zametki19, 525–530 (1976); English transl. in Math. Notes19, 320–323 (1976)Google Scholar
3. 3.
Hayman, W.K.: Meromorphic functions. Oxford: Clarendon Press 1964Google Scholar
4. 4.
Lang, S.: Transcendental numbers and diophantine approximations. Bull. Am. Math. Soc.77, 635–677 (1971)Google Scholar
5. 5.
Lang, S.: The error term in Nevanlinna theory, Duke Math. J.56, 193–218 (1988).Google Scholar
6. 6.
Lang, S., Cherry, W.: Topics in Nevanlinna theory III, Lect. Notes Math. vol. 1433. New York: Springer, 1990Google Scholar
7. 7.
Miles, J.: A sharp form of the lemma on the logarithmic derivative, to appear in J. London Math. Soc.Google Scholar
8. 8.
Nevanlinna, R.: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris, 1929. Reprinted by Chelsea, New York, 1974Google Scholar
9. 9.
Nevanlinna, R.: Remarques sur les fonctions monotones, Bull. Sci. Math.55, 140–144 (1931)Google Scholar
10. 10.
Osgood, C.F.: Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory21, 347–389 (1985)Google Scholar
11. 11.
Roth, K.F.: Rational approximations to algebraic numbers, Mathematika2, 1–20 (1955)Google Scholar
12. 12.
Vojta, P.: Diophantine approximations and value distribution theory, Lect. Notes Math. vol. 1239. New York: Springer, 1987Google Scholar
13. 13.
Wong, P.: On the second main theorem in Nevanlinna theory, Amer. J. Math.111, 549–583 (1989)Google Scholar
14. 14.
Ye, Z.: On Nevanlinna's error terms, Duke Math. J.64, 243–260 (1991)Google Scholar