Inventiones mathematicae

, Volume 108, Issue 1, pp 349–368 | Cite as

Nash triviality in families of Nash manifolds

  • Michel Coste
  • Masahiro Shiota
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABB] Aquistapace, F., Benedetti, R., Broglia, F.: Effectiveness-non effectiveness in semialgebraic and PL geometry. Invent. Math.102, 141–156 (1990)Google Scholar
  2. [BCR] Bochnak, J., Coste, M., Roy, M-F.: Géometrie algébrique réelle. (Ergeb. Math. Grenzgeb., 3. Folge, vol. 12) Berlin Heidelberg New York: Springer 1987Google Scholar
  3. [H] Hardt, R.M.: Semi-algebraic local-triviality in semi-algebraic mappings. Am. J. Math.102 (n. 2), 291–302 (1980)Google Scholar
  4. [M] Milnor, J.: Morse theory. (Ann. Math. Stud. vol. 51) Princeton: Princeton University Press 1963Google Scholar
  5. [N] Nabutovski, A.: Non-recursive functions in real algebraic geometry. In: Galbiati, M., Tognoli, A. (eds.) Real Analytic and Algebraic geometry. (Lect. Notes Math., vol. 1420) Berlin Heidelberg New York: Springer 1990Google Scholar
  6. [R] Ramanakoraisina, R.: Complexité des fonctions de Nash. Commun. Algebra17 (n. 6), 1395–1406 (1989)Google Scholar
  7. [S] Shiota, M.: Nash manifolds. (Lect. Notes Math., vol. 1269) Berlin Heidelberg New York: Springer 1987Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Michel Coste
    • 1
  • Masahiro Shiota
    • 2
  1. 1.IRMAR (CNRS, U.R.A. 305)Université de Rennes 1Rennes CedexFrance
  2. 2.Department of Mathematics, College of General EducationNagoya UniversityNagoyaJapan

Personalised recommendations