Inventiones mathematicae

, Volume 108, Issue 1, pp 49–65 | Cite as

Non-embeddable CR-manifolds and surface singularities

  • Elisha Falbel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Akahori, A.: The new approach to the local embedding theorem of CR-structures forn≧4. (Contemp. Math., vol. 49, pp. 1–10) Providence, RI: Am. Math. Soc. 1986Google Scholar
  2. [AS] Andreotti, A., Siu, Y.T.: Projective embedding of pseudoconvex spaces. Ann. Sc. Norm. Super. Pisa24, 231–278 (1970)Google Scholar
  3. [BM] Boutet de Monvel, L.: Intégration des équations de Cauchy-Riemann induites formelles. Séminaire Goulaouic-Lions-Schwartz, ExposéIX (1974–1975)Google Scholar
  4. [B] Burns, D.: Global behavior of some tangencial Cauchy-Riemann equations. In: Partial differential equations and geometry, pp. 51–56. In: Byrnes, C.I. (ed.) Proc. Conf. Park City 1977. New York: Dekker 1979Google Scholar
  5. [C] Cartan, E.: La géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes. Ann. Mat. IV. Ser.XI, 17–90 (1932)Google Scholar
  6. [D-G] Docquier, F., Grauert, H.: Levisches Problem und Rungesher Satz für Teilgebiete Steinscher Manningfaltigkeiten. Math. Ann.140, 94–123 (1960)Google Scholar
  7. [G-R] Gunning, R.C., Rossi, H.: Analytic functions of several complex variables. Englewood-Cliffs, NJ: Prentice-Hall 1965Google Scholar
  8. [G-S] Greuel G.M., Steenbrink, J.: On the topology of smoothable singularities. In: Oilik, P. (ed.) Singularities. (Proc. Symp. Pure Math., vol. 40, part 1, pp. 535–545) Providence, RI: Am. Math. Soc. 1983Google Scholar
  9. [H] Hamm, H.: Lokale topologische Eigenshaften complexer Räume. Math. Ann.191, 235–252 (1971)Google Scholar
  10. [HL] Harvey, R., Lawson, B.: On boundaries of complex analytic varieties. I. Ann. Math.102, 233–290 (1975)Google Scholar
  11. [JT1] Jacobowitz, H., Treves, F.: Non-realizable CR-structures. Invent. Math.66, 231–249 (1982)Google Scholar
  12. [JT2] Jacobowitz, H., Treves, F.: Aberrant CR-structures. Hokkaido Math. J.12, 276–292 (1983)Google Scholar
  13. [KK] Kaup-Kaup: Holomorphic functions of several complex variables. Berlin: de Gruyter 1983Google Scholar
  14. [K] Kuranishi, M.: Strongly pseudoconvex CR structures over small balls I, II, III, Ann. Math., II. Ser.115, 116 (1982)Google Scholar
  15. [L] Laufer, H.: Normal two-dimensional singularities. Princeton: Princeton University Press 1971Google Scholar
  16. [Lw] Lewy, H.: On the local character of the solutions of an atypical linear differential equation in three variables. Ann. Math.64, 514–522 (1956)Google Scholar
  17. [Lo] Looijenga, E.J.N.: Isolated singular points on complete intersections. (Lond. Math. Soc. Lect. Note ser., vol. 77) Cambridge: Cambridge University Press 1984Google Scholar
  18. [M1] Minor, J.: Morse Theory. (Ann. Math. Stud., vol. 51) Princeton: Princeton University Press 1963Google Scholar
  19. [M2] Milnor, J.: Singular points of complex Hypersurfaces. (Ann. Math. Stud., vol. 91) Princeton: Princeton University Press 1968Google Scholar
  20. [Mm] Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Publ. Math., Inst. Hautes Étud. Sci:9 (1961)Google Scholar
  21. [N] Niremberg, L.: On a question of Hans Lewy. Russ. Math. Surv.29, 251–262 (1974)Google Scholar
  22. [P] Poincaré, H.: Les fonctions analytiques de deux variables et la représentation conforme. Rend. Circ. Mat. Palermo23, 185–220 (1907)Google Scholar
  23. [R] Rossi, H.: Attaching analytic spaces to an analytic space along a pseudoconcave boundary. In: Aeppli, A., Calabi, E., Röhrl, H. (eds.), Proc. Conf. Comp. Anal., Minneapolis 1964. Berlin Heidelberg New York: Springer 1965Google Scholar
  24. [Y] Yau, S.S.T.: Konn-Rossi cohomology and its application to the complex Plateau problem I. Ann. Math.113, 67–110 (1981)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Elisha Falbel
    • 1
  1. 1.Instituto de Matemática e EstatisticaUniversity of São PauloBrazil

Personalised recommendations