Advertisement

Communications in Mathematical Physics

, Volume 167, Issue 2, pp 301–350 | Cite as

Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces

  • S. Hosono
  • A. Klemm
  • S. Thiesen
  • S-T Yau
Article

Abstract

Mirror Symmetry, Picard-Fuchs equations and instanton corrected Yukawa couplings are discussed within the framework of toric geometry. It allows to establish mirror symmetry of Calabi-Yau spaces for which the mirror manifold had been unavailable in previous constructions. Mirror maps and Yukawa couplings are explicitly given for several examples with two and three moduli.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews, see Essays on Mirror Manifolds (ed. S.-T. Yau), Hong Kong: Int. Press, 1992Google Scholar
  2. 2.
    Dixon, L.: In: Superstrings, Unified Theories and Cosmology 1987, G. Furlan et al, eds., Singapore: World Scientific, 1988Google Scholar
  3. 3.
    Lerche, W., Vafa, C., Warner, N.: Nucl. Phys.B324, 427 (1989)Google Scholar
  4. 4.
    Candelas, P., Dale, A.M., Lütken, C.A., Schimmrigk, R.: Complete Intersection Calabi-Yau Manifolds I, II, Nucl. Phys.B298, 493 (1988), Nucl Phys.B306, 113 (1988)Google Scholar
  5. 5.
    Dixon, L., Harvey, J.A., Vafa, C., Witten, E.: Nucl. Phys.B261, 678 (1985) and Nucl. Phys.B274, 285 (1986), Markushevich, D.G., Olshanetsky, M.A., Perelomov, A.M.: Commun. Math. Phys.111, 247 (1987); Erler, J., Klemm, A: Commun. Math. Phys.153, 579 (1993)Google Scholar
  6. 6.
    Klemm, A., Schimmrigk, R.: Nucl. Phys.B411, 153 (1994); Kreuzer, M., Skarke, H.: Nucl. Phys.B388, 113 (1993)Google Scholar
  7. 7.
    Vafa, C., Warner, N.: Phys. Lett.218B, 51 (1989); Vafa, C.: Mod. Phys. Lett.A 4, 1169 (1989)Google Scholar
  8. 8.
    Roan, S.-S.: Int. J. Math., Vol.2, No. 4, 439 (1991); Topological properties of Calabi-Yau mirror manifolds. Preprint 1992Google Scholar
  9. 9.
    Berglund, P., Hübsch, T.: Nucl. Phys.393B, 377 (1993)Google Scholar
  10. 10.
    Greene, B., Plesser, M.: Nucl. Phys.B338, 15 (1990)Google Scholar
  11. 11.
    Kreuzer, M., Skarke, H.: Nucl. Phys.B405, 305 (1993); Kreuzer, M.: Phys. Lett.314B, 31 (1993)Google Scholar
  12. 12.
    Witten, E.: Nucl. Phys.B403, 159 (1993)Google Scholar
  13. 13.
    Batyrev, V.: Dual Polyhedra and the Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties. Univ. Essen Preprint (1992), to appear in J. Alg. Geom. and Duke Math. J, Vol.69, No 2, 349 (1993)Google Scholar
  14. 14.
    Candelas, P., De la Ossa, X., Green, P., Parkes L.: Nucl. Phys.B359, 21 (1991)Google Scholar
  15. 15.
    Morrison, D.: Picard-Fuchs Equations and Mirror Maps for Hypersurfaces, In ref. [1]Google Scholar
  16. 16.
    Klemm, A., Theisen, S.: Nucl. Phys.B389, 153 (1993)Google Scholar
  17. 17.
    Font, A.: Nucl. Phys.B391, 358 (1993)Google Scholar
  18. 18.
    Libgober, A., Teitelbaum, J.: Duke Math. J., Int. Math. Res. Notices1, 29 (1993)Google Scholar
  19. 19.
    Klemm, A., Theisen, S.: Mirror Maps and Instanton sums for Complete Intersections in Weighted Projective space. Preprint LMU-TPW 93-08, Mod. Phys. Lett. (in press)Google Scholar
  20. 20.
    Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Nucl. Phys.B405, 279 (1993)Google Scholar
  21. 21.
    Yu. Manin, I.: Report on the Mirror Conjecture. Talk at the Mathematische Arbeitstagung, Bonn 1993Google Scholar
  22. 22.
    Candelas, P., Derrick, E., Parkes, L.: Nucl. Phys.B407, 115 (1993)Google Scholar
  23. 23.
    Eguchi, T., Yang, S.K.: Mod. Phys. Lett.A5, 1693 (1990); Dijkgraaf R., Verlinde, H., Verlinde, E.: Nucl. Phys.B352, 59 (1991); E. Witten: Mirror Manifolds and Topological Field Theory. In: Essays on Mirror Manifolds (ed. S.-T. Yau), Hong Kong: Int. Press, 1992, pp. 120–158Google Scholar
  24. 24.
    Distler, J., Greene, B.: Nucl. Phys.B309, 295 (1988)Google Scholar
  25. 25.
    Dine, M., Seiberg, N., Wen, X-G., Witten, E.: Nucl. Phys.B278, 769 (1987) Nucl. Phys.B289, 319 (1987)Google Scholar
  26. 26.
    Dixon, L., Friedan, D., Martinec, E., Shenker, S.: Nucl. Phys.B282, 13 (1987); Hamidi, S., Vafa, C.: Nucl. Phys.B279, 465 (1987); Lauer, J., Mas, J., Nilles, H.P.: Nucl. Phys.B351, 353 (1991); Stieberger, S., Jungnickel, D., Lauer, J., Spalinski, M.: Mod. Phys. Lett.A7, 3859 (1992); Erler, J., Jungnickel, D., Spalinski, M. Stieberger, S.: Nucl. Phys.B397, 379 (1993)Google Scholar
  27. 27.
    Blok, B., Varchenko, A.: Int. J. Mod. Phys.A7, 1467 (1992); Lerche, W., Smit, D.J., Warner, N.: Nucl. Phys.B372, 87 (1992)Google Scholar
  28. 28.
    Cadavid, A.C., Ferrara, S.: Phys. Lett.267B, 193, (1991); Ferrara, S. Louis, J.: Phys. Lett.278B, 240 (1992); Ceresole, A., D'Auria, R., Ferrara, S., Lerche, W., Louis, J.: Int. J. Mod. Phys.A8, 79 (1993)Google Scholar
  29. 29.
    Klemm, A., Theisen, S., Schmidt, M.G.: Int. J. Mod. Phys.A7, 6215 (1992)Google Scholar
  30. 30.
    Dixon, L., Kaplunovsky, V., Louis, J.: Nucl. Phys.B329, 27 (1990); Cecotti, S., Ferrara, S., Girardello, L.: Int. J. Mod. Phys.A4, 2465 (1989)Google Scholar
  31. 31.
    Roan, S.S., Yau, S.T.: Acta Math. Sinica(NS) 3, 256 (1987); Roan, S.S.: Diff. J. Geom.30, 523 (1989)Google Scholar
  32. 32.
    Dais, D., Klemm, A.: On the Invariants of Minimal Desingularizations of 3-dimensional Calabi-Yau Weighted Complete Intersection Varieties. In preparationGoogle Scholar
  33. 33.
    Oda, T.: Convex Bodies and Algebraic geometry, (An Introduction to the Theory of Toric Varieties). Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd15, Berlin Heidelberg, New York: Springer (1988); Danilov, V.I.: Russ. Math. Surv.33, 97 (1978)Google Scholar
  34. 34.
    Berltrametti, M., Robbiano, L.: Expo. Math.4, 11 (1986)Google Scholar
  35. 35.
    Aspinwall, D., Greene, B., Morrison, D.: Phys. Lett.303B, 249 (1993)Google Scholar
  36. 36.
    Aspinwall, P., Lütken, A., Ross, G.: Phys. Lett.241B, 373 (1990); Aspinwall, P., Lütken, A.: A New Geometry from Superstring Theory, In: [1]Google Scholar
  37. 37.
    Batyrev, V., van Straten, D.: Generalized Hypergeometric functions and Rational Curves on Calabi-Yau Complete Intersections in Toric Varieties. Essen preprint, 1993Google Scholar
  38. 38.
    Yonemura, T.: Tohoku Math. J.,42, 351 (1990)Google Scholar
  39. 39.
    Roan, S.-S.: Topological Couplings of Calabi-Yau Orbifolds. Max-Planck-Institut Series, No. 22 (1992), to appear in J. of Group Theory in Phys.Google Scholar
  40. 40.
    Markushevich, D., Olshanetsky, M., Perelomov, A.: Commun. Math. Phys.111, 247 (1987)Google Scholar
  41. 41.
    Dolgachev, I.: Weighted Projective Varieties. In: Group Actions and Vector Fields, Proc. Polish-North Am. Sem. Vancouver (1981) LNM Vol.965, Berlin, Heidelberg, New York: Springer, 1982, p. 34Google Scholar
  42. 42.
    Griffiths, P.: Ann. Math.90, 460 (1969)Google Scholar
  43. 43.
    Aleksandrov, A.: Math. USSR Sbornik,45, 1 (1983)Google Scholar
  44. 44.
    Morrison, D.: Am. Math. Soc.6, 223, (1993); Compactifications of Moduli spaces inspired by mirror symmetry. DUK-M-93-06, alg-geom/9304007Google Scholar
  45. 45.
    Gel'fand, I.M., Zelevinsky, A.V., Kapranov, M.M.: Func. Anal. Appl.28, 12 (1989) and Adv. Math.84, 255 (1990)Google Scholar
  46. 46.
    Morrison, D.: Am. Math. Soc.6, 223 (1993); Compactifications of Moduli spaces inspired by mirror symmetry. DUK-M-93-06, alg-geom/9304007Google Scholar
  47. 47.
    Candelas, P., De la Ossa, X.: Nucl. Phys.B355, 455 (1991)Google Scholar
  48. 48.
    Oda, T., Park, H.S.: Tohoku Math. J.43, 375 (1991)Google Scholar
  49. 49.
    Batyrev, V.V.: Quantum cohomology rings of toric manifolds. Preprint (1993)Google Scholar
  50. 50.
    Aspinwall, P., Morrison, D.: Commun. Math. Phys.151, 245 (1993)Google Scholar
  51. 51.
    Berglund, P.: Commun. Math. Phys.118, 411 (1988)Google Scholar
  52. 52.
    Berglund, P., Candelas, P., de la Ossa, X., Font, A., Hübsch, T., Janic, D., Quevedo, F.: Periods for Calabi-Yau and Landau-Ginzburg Vacua. Preprint CERN-TH. 6865/93Google Scholar
  53. 53.
    Candelas, P., de la Ossa, X., Font, A., Katz, S., Morrison, D.: Mirror Symmetry for Two-Parameter Models. Preprint CERN-TH.6884/93Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • S. Hosono
    • 1
  • A. Klemm
    • 2
  • S. Thiesen
    • 2
  • S-T Yau
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Sektion Physik der Universität MünchenMünchenGermany

Personalised recommendations