Advertisement

Communications in Mathematical Physics

, Volume 137, Issue 3, pp 533–552 | Cite as

The geometry of the super KP flows

  • Jeffrey M. Rabin
Article

Abstract

A supersymmetric generalization of the Krichever map is used to construct algebro-geometric solutions to the various super Kadomtsev-Petviashvili (SKP) hierarchies. The geometric data required consist of a suitable algebraic supercurve of genusg (generallynot a super Riemann surface) with a distinguished point and local coordinates (z, θ) there, and a generic line bundle of degreeg−1 with a local trivialization near the point. The resulting solutions to the Manin-Radul SKP system describe coupled deformations of the line bundle and the supercurve itself, in contrast to the ordinary KP system which deforms line bundles but not curves. Two new SKP systems are introduced: an integrable “Jacobian” system whose solutions describe genuine Jacobian flows, deforming the bundle but not the curve; and a nonintegrable “maximal” system describing independent deformations of bundle and curve. The Kac-van de Leur SKP system describes the same deformations as the maximal system, but in a different parametrization.

Keywords

Neural Network Complex System Nonlinear Dynamics Riemann Surface Line Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krichever, I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math. Surv.32:6, 185–213 (1977)Google Scholar
  2. 2.
    Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations. Proc. Int. Symp. on Algebraic Geometry, Kyoto 1977, pp. 115–153Google Scholar
  3. 3.
    Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations, pp. 39–119. In: Nonlinear integrable systems—classical theory and quantum theory. Jimbo, M., Miwa, T. (eds.) Singapore: World Scientific 1983Google Scholar
  4. 4.
    Mulase, M.: Cohomological structure in soliton equations and Jacobian varieties. J. Diff. Geom.19, 403–430 (1984)Google Scholar
  5. 5.
    Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHES61, 5–65 (1985)Google Scholar
  6. 6.
    Shioto, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math.83, 333–382 (1986)Google Scholar
  7. 7.
    Manin, Yu.I., Radul, A.O.: A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Commun. Math. Phys.98, 65–77 (1985)Google Scholar
  8. 8.
    Mulase, M.: Solvability of the super KP equation and a generalization of the Birkhoff decomposition. Inv. Math.92, 1–46 (1988)Google Scholar
  9. 9.
    Ueno, K., Yamada, H., Ikeda, K.: Algebraic study on the super-KP hierarchy and the orthosymplectic super-KP hierarchy. Commun. Math. Phys.124, 57–78 (1989)Google Scholar
  10. 10.
    Alvarez-Gaumé, L., Gomez, C., Nelson, P., Sierra, G., Vafa, C.: Fermionic strings in the operator formalism. Nucl. Phys.B 311, 333–400 (1988)Google Scholar
  11. 11.
    Schwarz, A.S.: Fermionic string and universal moduli space. Nucl. Phys. B317, 323–343 (1989)Google Scholar
  12. 12.
    Dolgikh, S.N., Schwarz, A.S.: Supergrassmannians super τ-functions and strings, pp. 231–244. In: Physics and mathematics of strings. Brink, L., Friedan, D., Polyakov, A.M. (eds.) Singapore: World Scientific 1990Google Scholar
  13. 13.
    Mulase, M., Rabin, J.M.: Super Krichever functor. U.C. Davis preprint ITD 89/90-10, 1990Google Scholar
  14. 14.
    Pakuliak, S.Z.: Periodic one-gap solutions of supersymmetrical KdV. 1987 preprintGoogle Scholar
  15. 15.
    Rabin, J.M., Freund, P.G.O.: Supertori are algebraic curves. Commun. Math. Phys.114, 131–145 (1988)Google Scholar
  16. 16.
    Radul, A.O.: Algebro-geometric solutions to the super Kadomtsev-Petviashvili hierarchy. In: Seminar on supermanifolds, vol. 28. Leites, D.A. (ed.). Report Stockholm University 1988Google Scholar
  17. 17.
    Kac, V.G., van de Leur, J.W.: Super boson-fermion correspondence. Ann. Inst. Fourier, Grenoble37, 99–137 (1987)Google Scholar
  18. 18.
    Kac, V.G., van de Leur, J.W.: Super boson-fermion correspondence of type B, pp. 369–406. In: Infinite dimensional Lie algebras and groups. Kac, V.G. (ed.). Singapore: World Scientific 1989Google Scholar
  19. 19.
    Bergvelt, M.J.: Infinite super Grassmannians and super Plücker equations, pp. 343–351. In: Infinite dimensional Lie algebras and groups. Kac, V.G. (ed.). Singapore: World Scientific 1989Google Scholar
  20. 20.
    LeClair, A.: Supersymmetric KP hierarchy: free field construction. Nucl. Phys.B 314, 425–438 (1989)Google Scholar
  21. 21.
    Hartshorne, R.: Algebraic geometry. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  22. 22.
    Burchnall, J.L., Chaundy, T.W.: Commutative ordinary differential operators. Proc. London Math. Soc.21, 420–440 (1922); Proc. R. Soc. London Ser. A118, 557–583 (1928)Google Scholar
  23. 23.
    Manin, Yu.I.: Gauge field theory and complex geometry. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  24. 24.
    Rosly, A.A., Schwarz, A.S., Voronov, A.A.: Geometry of superconformal manifolds. Commun. Math. Phys.119, 129–152 (1988)Google Scholar
  25. 25.
    Hodgkin, L.: Problems of fields on super Riemann surfaces. J. Geom. and Phys.6, 333–348 (1989)Google Scholar
  26. 26.
    Nag, S.: The complex analytic theory of Teichmüller spaces. New York: Wiley 1988Google Scholar
  27. 27.
    Alvarez-Gaumé, L., Gomez, C., Moore, G., Vafa, C.: Strings in the operator formalism. Nucl. Phys.B 303, 455–521 (1988)Google Scholar
  28. 28.
    Douglas, M.R.: Strings in less than one dimension and the generalized KdV hierarchies. Phys. Lett.B 238, 176–180 (1990)Google Scholar
  29. 29.
    Banks, T., Douglas, M.R., Seiberg, N., Shenker, S.H.: Microscopic and macroscopic loops in non-perturbative two dimensional gravity. Phys. Lett. B238, 279–286 (1990)Google Scholar
  30. 30.
    Dijkgraaf, R., Witten, E.: Mean field theory, topological field theory, and multi-matrix models. Nucl. Phys.B 342, 486–522 (1990)Google Scholar
  31. 31.
    Di Francesco, P., Distler, J., Kutasov, D.: Superdiscrete series coupled to 2d supergravity. Mol. Phys. Lett. A 5:26, 2135–2145 (1990) Kreuzer, M., Schimmrigk, R.: Nonperturbative string equations from the generalized super-KdV hierarchy. U.C.S.B. preprint NSF-ITP-90-119, 1990Google Scholar
  32. 32.
    Mulase, M.: A new super KP system and a characterization of the Jacobians of arbitrary algebraic supercurves. J. Diff. Geom. (to appear)Google Scholar
  33. 33.
    Adams, M.R., Bergvelt, M.: Heisenberg algebras, Grassmannians, and isospectral curves. University of Georgia preprint, 1990Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jeffrey M. Rabin
    • 1
  1. 1.Department of MathematicsUniversity of California at San DiegoLa JollaUSA

Personalised recommendations