Journal of Molecular Evolution

, Volume 29, Issue 3, pp 208–211 | Cite as

Rates of synonymous substitution in plant nuclear genes

  • Kenneth H. Wolfe
  • Paul M. Sharp
  • Wen-Hsiung Li
Article

Summary

The rate of synonymous nucleotide substitution in nuclear genes of higher plants has been estimated. The rate varies among genes by a factor of up to two, in a manner that is not immediately explicable in terms of base composition or codon usage bias. The average rate, in both monocots and dicots, is about four times higher than that in chloroplast genes. This leads to an estimated absolute silent substitution rate of 6 × 10−9 substitutions per site per year that falls within the range of average rates (2−8 × 10−9) seen in different mammalian nuclear genomes.

Key words

Plant molecular evolution Molecular clock Chloroplast DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brinkmann H, Martinez P, Quigley F, Martin W, Cerff R (1987) Endosymbiotic origin and codon bias of the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase from maize. J Mol Evol 26:320–328PubMedGoogle Scholar
  2. Chao S, Sederoff R, Levings CS III (1984) Nucleotide sequence and evolution of the 18S ribosomal RNA gene in maize mitochondria. Nucleic Acids Res 12:6629–6644PubMedGoogle Scholar
  3. Chen H-C, Wintz H, Weil J-H, Pillay DTN (1988) Nucleotide sequence of chloroplast CF1-ATPase ε-subunit and elongator tRNAMet genes fromArabidopsis thaliana. Nucleic Acids Res 16:10372PubMedGoogle Scholar
  4. Chojecki J (1986) Identification and characterisation of a cDNA clone for cytosolic glyceraldehyde-3-phosphate dehydrogenase in barley. Carlsberg Res Commun 51:203–210Google Scholar
  5. Filipski J (1988) Why the rate of silent codon substitutions is variable within a vertebrate's genome. J Theor Biol 134:159–164PubMedGoogle Scholar
  6. Good AG, Pelcher LE, Crosby WL (1988) Nucleotide sequence of a complete barley alcohol dehydrogenase 1 cDNA. Nucleic Acids Res 16:7182PubMedGoogle Scholar
  7. Klee HJ, Muskopf YM, Gasser CS (1987) Cloning of anArabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Gen Genet 210:437–442CrossRefPubMedGoogle Scholar
  8. Lee KY, Townsend J, Tepperman J, Black M, Chui CF, Mazur B, Dunsmuir P, Bedbrook J (1988) The molecular basis of sulfonylurea resistance in tobacco. EMBO J 7:1241–1248Google Scholar
  9. Li W-H, Wu C-I, Luo C-C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174PubMedGoogle Scholar
  10. Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342PubMedGoogle Scholar
  11. Maraña C, García-Olmedo F, Carbonero P (1988) Linked sucrose synthase genes in group-7 chromosomes in hexaploid wheat (Triticum aestivum L.). Gene 63:253–260CrossRefPubMedGoogle Scholar
  12. Mazur BJ, Chui C-F, Smith JK (1987) Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol 85: 1110–1117Google Scholar
  13. Neuhaus H (1989) Nucleotide sequence of the chloroplast genes for tRNAGln and the 4 kD K polypeptide of photosystem II from mustard (Sinapsis alba). Nucleic Acids Res 17:444PubMedGoogle Scholar
  14. Niesbach-Klösgen U, Barzen E, Bernhardt J, Rohde W, Schwarz-Sommer Zs, Reif HJ, Weinand U, Saedler H (1987) Chalcone synthase genes in plants: a tool to study evolutionary relationships. J Mol Evol 26:213–225CrossRefGoogle Scholar
  15. Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86PubMedGoogle Scholar
  16. Rohde W, Becker D, Salamini F (1988) Structural analysis of thewaxy locus fromHordeum vulgare. Nucleic Acids Res 16: 7185–7186PubMedGoogle Scholar
  17. Salinas J, Matassi G, Montero LM, Bernardi G (1988) Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Res 16:4269–4285PubMedGoogle Scholar
  18. Sharp PM, Li W-H (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230PubMedGoogle Scholar
  19. Sharp PM, Li W-H (1989) On the rate of DNA sequence evolution inDrosophila. J Mol Evol 28:398–402PubMedGoogle Scholar
  20. Stebbins GL (1981) Coevolution of grasses and herbivores. Ann Mo Bot Gard 68:75–86Google Scholar
  21. Trick M, Dennis ES, Edwards KJR, Peacock WJ (1988) Molecular analysis of the alcohol dehydrogenase gene family of barley. Plant Mol Biol 11:147–160CrossRefGoogle Scholar
  22. Walfe KH (1989) Compilation of sequences of protein-coding genes in chloroplast DNA including cyanelle and cyanobacterial homologues. Plant Mol Biol Reporter 7:30–48Google Scholar
  23. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedGoogle Scholar
  24. Wolfe KH, Sharp PM, Li W-H (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • Kenneth H. Wolfe
    • 1
    • 2
  • Paul M. Sharp
    • 1
  • Wen-Hsiung Li
    • 2
  1. 1.Department of GeneticsTrinity CollegeDublin 2Ireland
  2. 2.Center for Demographic and Population GeneticsUniversity of TexasHoustonUSA

Personalised recommendations