Journal of Molecular Evolution

, Volume 29, Issue 2, pp 108–125 | Cite as

Evolution of the autosomal chorion cluster inDrosophila. II. Chorion gene expression and sequence comparisons of thes16 ands19 genes in evolutionarily distant species

  • Maryanne G. Fenerjian
  • Juan Carlos Martínez-Cruzado
  • Candace Swimmer
  • Dennis King
  • Fotis C. Kafatos
Article

Summary

We present a total of 13 kb of DNA sequences, encompassing autosomal chorion genes and their flanking DNA in four species of the genusDrosophila. Against a background of extensive divergence in introns and even in parts of the coding regions, islands of strong conservation are evident in the proximal 5′ flanking and 5′ untranslated sequences. An extragenic region of strong conservation is seen downstream of the last chorion gene in the autosomal cluster. The conserved DNA elements may be related to the conserved regulatory features of this cluster, including gene amplification and tissue- and temporally regulated transcription.

Key words

Chorion genes Sequence conservation Transcriptional regulatory elements Gene amplification Myosin-like gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beverley SM, Wilson AC (1984) Molecular evolution inDrosophila and the higher diptera. II. A time scale for fly evolution. J Mol Evol 21:1–13PubMedGoogle Scholar
  2. Biggen MD, Gibson TJ, Hong GF (1983) Buffer-gradient gels and35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci USA 80:3963–3965PubMedGoogle Scholar
  3. Choi O-R, Engel JD (1986) A 3′ enhancer is required for temporal and tissue-specific transcriptional activation of the chicken adult β-globin gene. Nature 323:731–734CrossRefPubMedGoogle Scholar
  4. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995PubMedGoogle Scholar
  5. Dale DMK, McClure BA, Houchins JP (1985) A rapid singlestranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing to corn mitochondrial 18S rDNA. Plasmid 13: 31–40CrossRefPubMedGoogle Scholar
  6. Delidakis C, Kafatos FC (1987) Amplification of a chorion gene cluster inDrosophila is subject to multiplecis-regulatory elecments and to long-range position effects. J Mol Biol 197: 11–26CrossRefPubMedGoogle Scholar
  7. Delidakis C, Kafatos FC (1989) Replication origins and multiplecis-acting elements for normal amplification of the autosomal chorion genes inDrosophila. EMBO J 8:891–901PubMedGoogle Scholar
  8. Griffin-Shea R, Thireos G, Kafatos FC (1982) Organization of a cluster of four chorion genes inDrosophila and its relationship to developmental expression and amplification. Dev Biol 91:325–336CrossRefPubMedGoogle Scholar
  9. King RC (1970) Ovarian development inDrosophila melanogaster. Academic Press, New YorkGoogle Scholar
  10. Laughon A, Scott MP (1984) Sequence of aDrosophila segmentation gene: protein structure homology with DNA-binding proteins. Nature 310:25–31CrossRefPubMedGoogle Scholar
  11. Levine J, Spradling AD (1985) DNA sequence of a 3.8 kilobase pair region controllingDrosophila chorion gene amplification. Chromosoma 92:136–142CrossRefPubMedGoogle Scholar
  12. Levinson A, Silver D, Seed B (1984) Minimal size plasmids containing an m13 origin for production of single-strand transducing particles. J Mol Appl Genet 2:507–517PubMedGoogle Scholar
  13. Margaritis LH (1986) The eggshell ofDrosophila melanogaster. II. New staging characteristics and fine structural analysis of choriogenesis. Can J Zool 64:2152–2175Google Scholar
  14. Mariani BD, Lingappa JR, Kafatos FC (1988) Temporal regulation in development: negative and positive cis regulators dictate the precise timing of expression of aDrosophila chorion gene. Proc Natl Acad Sci USA 85:3029–3033PubMedGoogle Scholar
  15. Martínez-Cruzado JC (1988) Evolution of the organization and DNA sequence of the autosomal chorion gene cluster in HawaiianDrosophila. Thesis, Harvard University, Cambridge MAGoogle Scholar
  16. Martínez-Cruzado JC, Swimmer C, Fenerjian MG, Kafatos FC (1988) Evolution of the autosomal chorion locus inDrosophila. I. General organization of the locus and sequence comparisons of genes s15 and s19 in evolutionarily distant species. Genetics 119:663–677PubMedGoogle Scholar
  17. Messing J (1983) New m 13 vectors for cloning. Meth Enzymol 101:20–78PubMedGoogle Scholar
  18. Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10:459–472PubMedGoogle Scholar
  19. Orr W, Komitopoulou K, Kafatos FC (1984) Mutants suppressing in trans chorion gene amplification inDrosophila. Proc Natl Acad Sci USA 81:3773–3777PubMedGoogle Scholar
  20. Orr-Weaver TL, Spradling AC (1986)Drosophila chorion gene amplification requires an upstream region regulating s 18 transcription. Mol Cell Biol 6:4624–4633PubMedGoogle Scholar
  21. Parks S, Spradling A (1987) Spatially regulated expression of chorion genes duringDrosophila oogenesis. Genes & Dev 1: 497–509Google Scholar
  22. Parks S, Wakimoto B, Spradling A (1986) Replication and expression of an X-linked cluster ofDrosophila chorion genes. Dev Biol 117:294–305CrossRefPubMedGoogle Scholar
  23. Pustell J, Kafatos FC (1982) A high speed, high capacity homology matrix: zooming through SV40 and polyoma. Nucleic Acids Res 10:4765–4782PubMedGoogle Scholar
  24. Pustell J, Kafatos FC (1984) A convenient and adaptable package of computer programs for DNA and protein sequence management, analysis and homology determination. Nucleic Acids Res 12:643–655PubMedGoogle Scholar
  25. Romano CP, Bienz-Tadmor B, Mariani BD, Kafatos FC (1988) Both early and lateDrosophila chorion gene promoters confer correct temporal, tissue and sex specificity on a reporter Adh gene. EMBO J 7:783–790PubMedGoogle Scholar
  26. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467PubMedGoogle Scholar
  27. Snyder M, Hunkapiller M, Yuen D, Silvert D, Fristrom J, Davidson N (1982) Cuticle protein genes ofDrosophila: structure, organization and evolution of four clustered genes. Cell 29:1027–1040CrossRefPubMedGoogle Scholar
  28. Spradling AC (1981) The organization and amplification of two chromosomal domains containingDrosophila chorion genes. Cell 27:193–201CrossRefPubMedGoogle Scholar
  29. Spradling AC, Mahowald AP (1980) Amplification of genes for chorion proteins during oogenesis inDrosophila melanogaster. Proc Natl Acad Sci USA 77:1096–1100PubMedGoogle Scholar
  30. Spradling AC, DeCicco DV, Wakimoto BT, Levine JF, Kalfayan LJ, Cooley L (1987) Amplification of the X-linkedDrosophila chorion gene cluster requires a region upstream from the s38 chorion gene. EMBO J 6:1045–1053PubMedGoogle Scholar
  31. Staden R (1982) Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res 10:4731–4751PubMedGoogle Scholar
  32. Staden R (1984) A computer program to enter DNA gel reading data into a computer. Nucleic Acids Res 12:499–504PubMedGoogle Scholar
  33. Tabor S, Richardson CC (1987) DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 84:4767–4771PubMedGoogle Scholar
  34. Thireos G, Griffin-Shea R, Kafatos FC (1980) Untranslated mRNA for a chorion protein inDrosophila melanogaster accumulates transiently at the onset of specific gene amplification. Proc Natl Acad Sci USA 77:5789–5793PubMedGoogle Scholar
  35. Throckmorton LH (1975) The phylogeny, ecology and geography ofDrosophila. In: King RC (ed) Handbook of genetics, vol 3. Plenum Press, New York, pp 421–469Google Scholar
  36. Wong Y-C, Pustell J, Spoerel N, Kafatos FC (1985) Coding and potential regulatory sequences of a cluster of chorion genes inDrosophila melanogaster. Chromosoma 92:124–135CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Maryanne G. Fenerjian
    • 1
  • Juan Carlos Martínez-Cruzado
    • 1
  • Candace Swimmer
    • 1
  • Dennis King
    • 1
  • Fotis C. Kafatos
    • 1
    • 2
  1. 1.Department of Cellular and Developmental Biology, The Biological LaboratoriesHarvard UniversityCambridgeUSA
  2. 2.Institute of Molecular Biology and BiotechnologyResearch Center of CreteHeraklio, CreteGreece

Personalised recommendations