Communications in Mathematical Physics

, Volume 165, Issue 2, pp 311–427 | Cite as

Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes

  • M. Bershadsky
  • S. Cecotti
  • H. Ooguri
  • C. Vafa


We develop techniques to compute higher loop string amplitudes for twistedN=2 theories withĉ=3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particular realization of theN=2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira-Spencer theory, which may be viewed as the closed string analog of the Chern-Simons theory. Using the mirror map this leads to computation of the ‘number’ of holomorphic curves of higher genus curves in Calabi-Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the correspondingN=2 theory. Relations withc=1 strings are also pointed out.


Closed String High Loop String Amplitude Topological Theory Anomaly Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lerche, W., Vafa, C., Warner, N.P.: Nucl. Phys. B324, 427 (1989)Google Scholar
  2. 2.
    Cecotti, S., Vafa, C.: Nucl. Phys. B367, 359–461 (1991)Google Scholar
  3. 3.
    Dixon, L.: In: Proc. of the 1987 ICTP Summer Workshop in High Energy Physics and Cosmology, TriesteGoogle Scholar
  4. 4.
    Witten, E.: Commun. Math. Phys.117, 353 (1988); Witten, E.: Commun. Math. Phys.118, 411 (1988);Google Scholar
  5. 4a.
    Eguchi, T., Yang, S.-K.: Mod. Phys. Lett. A5, 1693 (1900)Google Scholar
  6. 5.
    Dijkgraaf, R., Verlinde, H., Verlinde, E.: Nucl. Phys. B352, 59 (1991)Google Scholar
  7. 6.
    Alvarez-Gaumé, L., Freedman, D.Z.: Phys. Lett.94B, 171 (1980)Google Scholar
  8. 7.
    Candelas, P., de la Ossa, Xenia C., Green, Paul S., Parkes, L.: Nucl. Phys. B359, 21 (1991)Google Scholar
  9. 8.
    Aspinwall, P.S., Morrison, D.R.: Commun. Math. Phys.151, 245–262 (1993)Google Scholar
  10. 9.
    Witten, E.: In: Yau, S.T. (ed.) Essays on Mirror Manifolds. Hong Kong: International Press, 1992Google Scholar
  11. 10.
    Vafa, C.: In: Yau, S.T. (ed.) Essays on Mirror Manifolds. Hong Kong: International Press, 1992Google Scholar
  12. 11.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: Wiley, 1978Google Scholar
  13. 12.
    Zamolodchikov, A.B.: JETP Lett.43, 730 (1986)Google Scholar
  14. 13.
    Bryant, R., Griffiths, P.: In: Artin, M., Tate, J. (eds.) Arithmetic and Geometry. (Papers dedicated to I.R. Shafarevitch, vol. 2). Boston: Birkhäuser, 1983, p. 77;Google Scholar
  15. 13a.
    Ferrara, S., Strominger, A.: N=2 spacetime supersymmetry and Calabi-Yau moduli space. (Presented at Texas A & M University, String' 89 Workshop);Google Scholar
  16. 13b.
    Cecotti, S.: Commun. Math. Phys.131, 517 (1990);Google Scholar
  17. 13c.
    Strominger, A.: Commun. Math. Phys.133, 163 (1990);Google Scholar
  18. 13d.
    Candelas, P., de la Ossa, X.C.: Moduli Space of Calabi-Yau Manifolds. (University of Texas Report UTTG-07-90);Google Scholar
  19. 13e.
    D'Auria, R., Castellani, L., Ferrara, S.: Class. Quant. Grav.1, 1767 (1990)Google Scholar
  20. 14.
    de Wit, B., van Proeyen, A.: Nucl. Phys. B245, 89 (1984); de Wit, B., Lauwers, P. G., van Proyen, A.: Nucl. Phys. B255, 569 (1985); Cremmer, E., Kounnas, C., van Proeyen, A., Derendinger, J.-P., Ferrara, S., de Wit, B., Girardello, L.: Lucl. Phys. B250, 385 (1985)Google Scholar
  21. 15.
    Cecotti, S.: Int. J. Mod. Phys. A6, 1749 (1991);Google Scholar
  22. 15a.
    Cecotti, S.: Nucl. Phys. B355, 755 (1991)Google Scholar
  23. 16.
    Dijkgraaf, R., Verlinde, H., Verlinde, E.: Notes on Topological String Theory and 2-D Quantum Gravity. (Proceedings of Trieste Spring School on Strings and Quantum Gravity), 1990, pp. 91–156Google Scholar
  24. 17.
    Gato-Rivera, B., Semikhatov, A.M.: Phys. Lett. B293, 72–80 (1992)Google Scholar
  25. 18.
    Bershadsky, M., Lerche, W., Nemeschansky, D., Warner, N.P.: Nucl. Phys. B401, 304 (1993)Google Scholar
  26. 19.
    Polchinski, J.: Commun. Math. Phys.104, 37 (1986)Google Scholar
  27. 20.
    Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Nucl. Phys. B405, 279 (1993)Google Scholar
  28. 21.
    Witten, E.: Nucl. Phys. B340, 281 (1990);Google Scholar
  29. 21a.
    Dijkgraaf, R., Witten, E.: Nucl. Phys. B342, 486 (1990)Google Scholar
  30. 22.
    Verlinde, E., Verlinde, H.: Nucl. Phys. B348, 457 (1991)Google Scholar
  31. 23.
    Li, K.: Nucl. Phys. B354, 725–739 (1991)Google Scholar
  32. 24.
    Witten, E.: Chern-Simons Gauge Theory as a String Theory. IASSNS-HEP-92/45, hep-th/9207094Google Scholar
  33. 25.
    Kutasov, D.: Phys. Lett. B220, 153 (1989)Google Scholar
  34. 26.
    Dijkgraaf, R., Verlinde, E., Verlinde, H.: Nucl. Phys. B352, 59 (1991)Google Scholar
  35. 27.
    Schmid, W.: Invent. Math.22, 211 (1973)Google Scholar
  36. 28.
    Witten, E.: Quantum Background Independence in String Theory. IASSNS-HEP-93/29, hep-th/9306122Google Scholar
  37. 29.
    Kodaira, K., Spencer, D.C.: Annals of Math.67, 328 (1958); Kodaira, K., Niremberg, L., Spencer, D. C.: Annals of Math.68, 450 (1958); Kodaira, K., Spencer, D.C.: Acta Math.100, 281 (1958); Kodaira, K., Spencer, D.C.: Annals of Math.71, 43 (1960)Google Scholar
  38. 30.
    Tian, G.: In: Yau, S.T. (ed.) Essays on Mirror manifolds. Hong Kong: International Press, 1992 Tian, G.: In: Yau, S.T. (ed.) Mathematical aspects of String theory. Singapore: World Scientific, 1987Google Scholar
  39. 31.
    Todorov, A.: Geometry of Calabi-Yau. (MPI preprint). Weil-Peterson, July 1986Google Scholar
  40. 32.
    Tian, G.: Private communicationGoogle Scholar
  41. 33.
    Todorov, A.N.: Commun. Math. Phys.126, 325 (1989)Google Scholar
  42. 34.
    Kuranishi, M.: Annls of Math.75, 536 (1962)Google Scholar
  43. 35.
    Zwiebach, B.: Nucl. Phys. B390, 33 (1993)Google Scholar
  44. 36.
    Elitzur, S., Forge, A., Rabinovici, E.: Nucl. Phys. B388, 131 (1992)Google Scholar
  45. 37.
    Ooguri, H., Vafa, C.: Nucl. Phys. B361, 469 (1991); Mod. Phys. Lett. A5, 1389 (1990)Google Scholar
  46. 38.
    Batalin, I.A., Vilkovisky, G.A.: Phys. Rev D28, 2567 (1983)Google Scholar
  47. 39.
    Henneaux, M.: Lectures on the antifield-BRST formalism for gauge theories. (Proc. of XXII GIFT Meeting)Google Scholar
  48. 40.
    Ray, B., Singer, I.M.: Ann. Math.98, 154 (1973)Google Scholar
  49. 41.
    Bismut, J.-M., Freed, D.S.: Commun. Math. Phys.106, 159 (1986);107, 103 (1986); Bismut, J.-M., Gillet, H., Soulé, C.: Commun. Math. Phys.115, 49, 79, 301 (1988); Bismut, J.-M., Köhler, K.: Higher analytic torsion forms for direct images and anomaly formulas. (Univ. de Paris-sud, preprint 91-58)Google Scholar
  50. 42.
    Belavin, A., Knizhnik, V.: Phys. Lett.168 B, 201 (1986); Alvarez-Gaumé, L., Moore, G., Vafa, C.: Commun. Math. Phys.112, 503 (1987)Google Scholar
  51. 43.
    Hirzebruch, F.: Topological methods in Algebraic Geometry. Berline-Heidelberg-New York: Springer-Verlag, 1966Google Scholar
  52. 44.
    Schoen, R., Yau, S.-T.: Invent. Math.16, 161 (1972)Google Scholar
  53. 45.
    Tromba, J.: Man. Math.59, 249 (1987)Google Scholar
  54. 46.
    Witten, E.: Nucl. Phys.371, 191 (1992); Witten, E.: In: Yau, S. T. (ed.) Essays on Mirror Manifolds. Hong Kong: International Press, 1992Google Scholar
  55. 47.
    Hamidi, S., Vafa, C.: Nucl. Phys. B279, 465 (1987)Google Scholar
  56. 48.
    Mumford, D.: In: Artin, M, Tate, J. (eds.) Arithmetic and Geometry. (Papers dedicated to I. R. Shafarevitch). Boston: Birkäuser, 1983Google Scholar
  57. 49.
    Faber, C.: Ann. Math.132, 331 (1990)Google Scholar
  58. 50.
    Castellani, L., D'Auria, R., Ferrara, S.: Class. Quant. Grav.7, 1767 (1990)Google Scholar
  59. 51.
    Plesser, B.R., Greene, M.R.: Nucl. Phys. B338, 15 (1990)Google Scholar
  60. 52.
    Kazakov, V., Migdal, A.: Nucl. Phys. B311, 171 (1989); Polchinski, J.: Nucl. Phys. B346, 253 (1990)Google Scholar
  61. 53.
    Mukhi, S., Vafa, C.: Nucl. Phys. B407, 667 (1993)Google Scholar
  62. 54.
    Morrison, D.R.: In: Yau, S.T. (ed.) Essays on Mirror Manifolds. Hong Kong: International Press, 1992Google Scholar
  63. 55.
    Klemm, A., Theisen, S.: Nucl. Phys. B389, 153 (1993)Google Scholar
  64. 56.
    Antoniadis, I., Gava, E., Narain, K. S., Taylor, T. R.: Topological Amplitudes in String Theory. hepth/9307158Google Scholar
  65. 57.
    Seiberg, N.: Nucl. Phys. B303, 206 (1988); Cecotti, S., Ferrara, S., Girardello, L.: J. Mod. Phys. A4, 2475 (1989)Google Scholar
  66. 58.
    Friedan, D., Martinec, E., Shenker, S.: Phys. Lett.160B, 55 (1985)Google Scholar
  67. 59.
    Derendinger, J.P., Ibanez, L.E., Nilles, H.P.: Phys. Lett.155B, 65 (1985); Dine, M., Rohm, R., Seiberg, N., Witten, E.: Phys. Lett.156 B, 55 (1985)Google Scholar
  68. 60.
    This is currently being pursued by Narian et. al.Google Scholar
  69. 61.
    Kaplunovsky, V.: Nucl. Phys. B307, 36 (1988); Dixon, L. J., Kaplunovsky, V. S., Louis, J.: Nucl. Phys. B355, 649 (1991); Ferrara, S., Kounnas, C., Lüst, D., Zwirner, F: Nucl. Phys. B365, 431 (1991); Antoniadis, I., Gava, E., Narain, K. S.: Nucl. Phys. B383, 93 (1992) and Phys. Lett. B283, 209 (1992); Derendinger, J.-P., Ferrara, S., Kounnas, C., Zwirner, F.: Nucl. Phys. B372, 145 (1992)Google Scholar
  70. 62.
    Witten, E.: Nucl. Phys. B268, 79 (1986)Google Scholar
  71. 63.
    Shenker, S.: Proceedings of Cargèse Workshop on Random Surfaces, Quantum Gravity and Strings, 1990.Google Scholar
  72. 64.
    Axelrod, S., Singer, I.: Chern-Simons Perturbation Theory. MIT preprints, hep-th/9110056, hepth/9304087Google Scholar
  73. 65.
    Kontsevich, M.: Feynman Diagrams and Low-Dimensional Topology. (Talk given at 1st European Congress of Mathematics, Paris, July 1992)Google Scholar
  74. 66.
    Berkovitz, N.: Nucl. Phys. B395, 77 (1993)Google Scholar
  75. 67.
    Witten, E.: Nucl. Phys. B373, 187 (1992); Witten, E., Zwiebach, B.: Nucl. Phys. B377, 55 (1992)Google Scholar
  76. 68.
    Cecotti, S., Vafa, C.: Commun. Math. Phys.157, 139 (1993)Google Scholar
  77. 69.
    Losev, A.: Descendants constructed from matter fields in topological Landau-Ginzburg theories coupled to topological gravity. hepth/9211089; Losev, A., Polyubin, I.: On Connection between Topological Landau-Ginsburg Gravity and Integrable Systems. hep-th/9305079 Eguchi, T., Kanno, H., Yamada, Y., Yang, S.-K.: Phys. Lett. B305, 235 (1993)Google Scholar
  78. 70.
    Witten, E.: Commun. Math. Phys.117, 117 (1988); Witten, E.: Phys. Lett.206 B, 601 (1988)Google Scholar
  79. 71.
    Witten, E.: Commun. Math. Phys.121, 351 (1989)Google Scholar
  80. 72.
    Gross, D.: Nucl. Phys. B400, 161 (1993); Gross, D., Taylor, W.: Nucl. Phys. B400, 181 (1993); Nucl. Phys. B403, 395 (1993)Google Scholar
  81. 73.
    Dijkgraaf, R., Intriligator, K., Rudd, R.: unpublished Communicated by R.H. DijgraafGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. Bershadsky
    • 1
  • S. Cecotti
    • 2
  • H. Ooguri
    • 3
  • C. Vafa
    • 4
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA
  2. 2.SISSA-ISAS and INFN sez. di TriesteTriesteItaly
  3. 3.RIMSKyoto UniversityKyotoJapan
  4. 4.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations