Advertisement

Communications in Mathematical Physics

, Volume 178, Issue 2, pp 339–374 | Cite as

Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain

  • Song Jiang
Article

Abstract

We consider the equations of a viscous polytropic ideal gas in the domain exterior to a ball in ℝ n (n=2 or 3) and prove the global existence of spherically symmetric smooth solutions for (large) initial data with spherical symmetry. The large-time behavior of the solutions is also discussed. To prove the existence we first study an approximate problem in a bounded annular domain and then obtain a priori estimates independent of the boundedness of the annular domain. Letting the diameter of the annular domain tend to infinity, we get a global spherically symmetric solution as the limit.

Keywords

Neural Network Statistical Physic Complex System Initial Data Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. New York: Academic Press, 1975Google Scholar
  2. 2.
    Alikakos, N.D.: An application of the invariance principle to reaction-diffusion equations. J. Diff. Equations33, 201–225 (1979)CrossRefGoogle Scholar
  3. 3.
    Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Amsterdam, New York: North-Holland, 1990Google Scholar
  4. 4.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. London: Cambridge Univ. Press, 1967Google Scholar
  5. 5.
    Dafermos, C.M., Hsiao, L.: Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity. Nonlinear Anal. T.M.A.6, 435–454 (1982)CrossRefGoogle Scholar
  6. 6.
    Friedman, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs, NJ: Prentice-Hall, 1964Google Scholar
  7. 7.
    Jiang, S.: On initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas. J. Diff. Equations110, 157–181 (1994)CrossRefGoogle Scholar
  8. 8.
    Jiang, S.: On the asymptotic behavior of the motion of a viscous, heat-conducting, onedimensional real gas. Math. Z.216, 317–336 (1994)Google Scholar
  9. 9.
    Jiang, S.: Remarks on the global existence in the dynamics of a viscous, heat-conducting, one-dimensional gas. Proc. of the Workshop on Qualitative Aspects and Appl. of Nonlinear Evol Eqns., H. Beirao da Veiga, Ta-Tsien Li (eds.). Singapore: World Scientific Publ., 1994, pp. 156–162Google Scholar
  10. 10.
    Jiang, S.: Global smooth solutions to the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity (submitted)Google Scholar
  11. 11.
    Kawashima, S., Nishida, T.: Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases. J. Math. Kyoto Univ.21, 825–837 (1981)Google Scholar
  12. 12.
    Kawohl, B.: Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas. J. Diff. Equations58, 76–103 (1985)CrossRefGoogle Scholar
  13. 13.
    Kazhikhov, A.V.: To a theory of boundary value problems for equations of one-dimensional non-stationary motion of viscous heat-conduction gases. Boundary Value Problems for Hydrodynamical Equations. Inst. Hydrodynamics, Siberian Branch Akad., USSR, No.50, 1981, pp. 37–62 (Russian)Google Scholar
  14. 14.
    Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech.41, 273–282 (1977)CrossRefGoogle Scholar
  15. 15.
    Ladyzenskaja, O.A., Solonnikov, V.A., Ural'ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Providence, Rhode Island: AMS, 1968Google Scholar
  16. 16.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser A55, 337–342 (1979)Google Scholar
  17. 17.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ.20, 67–104 (1980)Google Scholar
  18. 18.
    Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of general fluids. Computing Meth. in Appl. Sci. and Engin. V, R. Glowinski, J.L. Lions (eds.), Amsterdam: North-Holland, 1982, pp. 389–406Google Scholar
  19. 19.
    Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys.89, 445–464 (1983)CrossRefGoogle Scholar
  20. 20.
    Nagasawa, T.: On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary. J. Diff. Equations65, 49–67 (1986)CrossRefGoogle Scholar
  21. 21.
    Nagasawa, T.: On the outer pressure problem of the one-dimensional polytropic ideal gas. Japan J. Appl. Math.5, 53–85 (1988)Google Scholar
  22. 22.
    Nagasawa, T.: On the one-dimensional free boundary problem for the heat-conductive compressible viscous gas. Lecture Notes in Num. Appl. Anal., M. Mimura, T. Nishida (eds.) Vol.10, Tokyo: Kinokuniya/North-Holland, 1989, pp. 83–99Google Scholar
  23. 23.
    Nikolaev, V.B.: On the solvability of mixed problem for one-dimensional axisymmetrical viscous gas flow. Dinamicheskie zadachi Mekhaniki sploshnoj sredy,63 Sibirsk. Otd. Acad. Nauk SSSR, Inst. Gidrodinamiki, 1983 (Russian)Google Scholar
  24. 24.
    Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. Pitman Monographs and Surveys in Pure and Appl. Math.35, Longman Sci. Tech., 1987Google Scholar
  25. 25.
    Serrin, J.: Mathematical principles of classical fluid mechanics. Handbuch der PhysikVIII/1, Berlin, Heidelberg, New York: Springer 1972, pp. 125–262Google Scholar
  26. 26.
    Valli, A.: Mathematical results for compressible flows. Mathematical Topics in Fluid Mechanics, J.F. Rodrigues, A. Sequeira (eds.) Pitman Research Notes in Math. Ser.274, New York: John Wiley 1992, pp. 193–229Google Scholar
  27. 27.
    Valli, A., Zajączkowski, W.M.: Navier-Stokes Equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys.103, 259–296 (1986)CrossRefGoogle Scholar
  28. 28.
    Yashima, H.F., Benabidallah, R.: Equation à symétrie sphérique d'un gaz visqueux et calorifère avec la surface libre. Annali Mat. Pura Applicata CLXVIII, 75–117 (1995)CrossRefGoogle Scholar
  29. 29.
    Yashima, H.F., Benabidallah, R.: Unicite' de la solution de l'équation monodimensionnelle ou à symétrie sphérique d'un gaz visqueux et calorifère. Rendi. del Circolo Mat. di Palermo, Ser. II,XLII, 195–218 (1993)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Song Jiang
    • 1
  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations