Communications in Mathematical Physics

, Volume 28, Issue 1, pp 47–67

Feynman's path integral

Definition without limiting procedure
  • Cécile Morette DeWitt
Article

Abstract

Feynman's integral is defined with respect to a pseudomeasure on the space of paths: for instance, letC be the space of pathsq:T⊂ℝ → configuration space of the system, letC be the topological dual ofC; then Feynman's integral for a particle of massm in a potentialV can be written
where
$$S_{\operatorname{int} } (q) = \mathop \smallint \limits_T V(q(t)) dt$$
and wheredw is a pseudomeasure whose Fourier transform is defined by
for μ∈C′. Pseudomeasures are discussed; several integrals with respect to pseudomeasures are computed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feynman, R. P., Hibbs, A. R.: Quantum mechanics and path integrals. New York: McGraw Hill Book Comp. 1965.Google Scholar
  2. 2.
    Laidlaw, M. G. G., DeWitt, C. Morette: Phys. Rev. D3, 1375–1378 (1971). — Laidlaw, M. G. G.: Ph. D. Thesis, University of North Carolina, 1971.CrossRefGoogle Scholar
  3. 3.
    DeWitt, C. Morette: Ann. Inst. H. Poincaré11, 153–206 (1969). A misprint occurs on p. 162 in the line following «développonsS en série de Taylor»; it should read:Open image in new window Google Scholar
  4. 4.
    Bourbaki, N.: Eléments de mathematiques. Chapter IX, Volume VI — also referred to as Fasicule 35 or No. 1343 of the Actualités Scientifiques et Industrielles — Paris, Hermann 1969. See also Friedrichs, K. O., Shapiro, H. N.et al.: Integration of functionals. Seminar Notes of the Institute of Mathematical Sciences of New York University 1957.Google Scholar
  5. 5.
    Choquet, G.: Mesures coniques, affines et cylindriques. Conferenza, Istituto di Alta Matematica, 1968.Google Scholar
  6. 6.
    Nelson, E.: J. Math. Phys.5, 332–343 (1964).CrossRefGoogle Scholar
  7. 7.
    Cameron, R. H.: J. Math. Phys.39, 126–140 (1960).Google Scholar
  8. 8.
    Schwartz, L.: Théorie des distributions. Paris: Hermann 1966.Google Scholar
  9. 9.
    Rudin, W.: Fourier analysis on groups. New York: Interscience Publ. 1962.Google Scholar
  10. 10.
    Faddeef, L. D., Popov, V. N.: Phys. Letters25 B, 29 (1967). See also Ref. [3], pp. 196, 200–202.Google Scholar
  11. 11.
    Dyson, F. J.: Missed opportunities. 1972. J. W. Gibbs lecture; Bull. Am. Math. Soc. to appear in 1972.Google Scholar
  12. 12.
    Gel'fand, I. M., Yaglom, A. M.: J. Math. Phys.1, 48–69 (1960) (translated from Uspekhi Mat. Nauk11, 77, 1956.).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Cécile Morette DeWitt
    • 1
  1. 1.Department of AstronomyUniversity of Texas at AustinUSA

Personalised recommendations