Advertisement

Communications in Mathematical Physics

, Volume 166, Issue 1, pp 27–62 | Cite as

Gaudin model, Bethe Ansatz and critical level

  • Boris Feigin
  • Edward Frenkel
  • Nikolai Reshetikhin
Article

Abstract

We propose a new method of diagonalization oif hamiltonians of the Gaudin model associated to an arbitrary simple Lie algebra, which is based on the Wakimoto modules over affine algebras at the critical level. We construct eigenvectors of these hamiltonians by restricting certain invariant functionals on tensoproducts of Wakimoto modules. This gives explicit formulas for the eigenvectors via bosonic correlation functions. Analogues of the Bethe Ansatz equations naturally appear as equations on the existence of singular vectors in Wakimoto modules. We use this construction to explain the connection between Gaudin's model and correlation functios of WZNW models.

Keywords

Neural Network Statistical Physic Correlation Function Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaudin, M.: J. Physique37, 1087–1098 (1976)Google Scholar
  2. 2.
    Gaudin, M.: Le Fonction d'Onde de Bethe, Paris: Masson, 1983Google Scholar
  3. 3.
    Jurcoi, B.: J. Math. Phys.30, 1289–1293 (1983)CrossRefGoogle Scholar
  4. 4.
    Kulish, P., Sklyanin, E.: Zapiski Nauch. Sem. LOMI95, 129–160 (1980)Google Scholar
  5. 5.
    Belavin, A., DDrinfeld, V.: Funct. Anal. Appl.16, 159–180 (1982)CrossRefGoogle Scholar
  6. 6.
    Kac, V.: Infinite-dimensional Lie Algebras. 3rd Edition, Cambridge: Cambridge University Press, 1990Google Scholar
  7. 7.
    Baxter, R.: Exactly solved models in statistical mechanics. New York: Academic Press, 1982Google Scholar
  8. 8.
    Faddeev, L., Takhtajan, L.: Russ., Math. Surv.34, N5, 11–68 (1979)Google Scholar
  9. 9.
    Sklyanin, E.: In: Quantum Groups and Quantum Integrable Systems. Nankai Lectures in Mathematical Physiss, ed. Mo-Lin Ge, Singapore: World Scientific, 1992, pp. 63–97Google Scholar
  10. 10.
    Feigin, B., Frenkel, E.: Int. J. Mod. Phys.A7, Supplement 1A, 197–215 (1992)CrossRefGoogle Scholar
  11. 11.
    Frenkel, E.: Affine Kac-Moody algebras at the critical level and quantum Drinfeld-Sokolov reduction. Ph.D. Thesis, Harward University, 1991Google Scholar
  12. 12.
    Hayashi, T.: Invent. Math.94, 13–52 (1988)CrossRefGoogle Scholar
  13. 13.
    Goodman, R., Wallach, N.: Trans. AMS315, 1–55 (1989)Google Scholar
  14. 14.
    Malikov, F.: Funct. Anal. Appl.23, 66–67 (1989)CrossRefGoogle Scholar
  15. 15.
    Babelon, O., de Vega, H.J., Viallet, C.M.: Nucl. Phys.B200, 266–280 (1982)CrossRefGoogle Scholar
  16. 16.
    Kulish, P.P., Reshetikhin, N.Yu.: J. Phys. A16, L591-L596 (1983)Google Scholar
  17. 17.
    Wakimoto, M.: Commun. Math. Phys.104, 605–609 (1986)CrossRefGoogle Scholar
  18. 18.
    Feigin, B., Frenkel, E.: Uspekhi Matem. Nauk43, N5, 227–228 (1988) [English translation: Russ. Math. Surv.,43, N5, 221–222 (1988)]Google Scholar
  19. 19.
    Kac, V., Kazhdan, D.: Adv. Math.34, 97–108 (1979)CrossRefGoogle Scholar
  20. 20.
    Sklyanin, E.: J. Sov. Math.47, 2473–2488 (1989)Google Scholar
  21. 21.
    Tsuchiya, A., Ueno, K., Yamada, Y.: Adv. Stud. in Pure Math.19, 459–565 (1989)Google Scholar
  22. 22.
    Feigin, B., Fuchs, D.: In: Geometry and Physics. Essays in honor of Gelfand, I.M. on the occasion of his 75th birthday, eds. Gindikin, S., Singer, I.M. Amsterdam: North-Holland, 1991, pp. 209–235Google Scholar
  23. 23.
    Beilinson, A., Feigin, B., Mazur, B.: Introduction to algebraic field theory on curves. To appearGoogle Scholar
  24. 24.
    Segal, G.: Definition of conformal field theory. PreprintGoogle Scholar
  25. 25.
    Kazhdan, D., Lusztig, G.: J. AMS6, 905–1011 (1993)Google Scholar
  26. 26.
    Cherednik, I.: Publ. RIMS27, 727–744 (1991)Google Scholar
  27. 27.
    Knizhnik, V., Zamolodchikov, A.: Nucl. Phys. B.247, 83–103 (1984)CrossRefGoogle Scholar
  28. 28.
    Tsuchiya, A., Kanie, Y.: Adv. Stud. Pure Math.16, 297–372 (1988)Google Scholar
  29. 29.
    Frenkel, I., Reshetikhin, N.: Commun. Math. Phys.146, 1–60 (1992)Google Scholar
  30. 30.
    Schechtman, V., Varchenkoi, A.: Integral representations of N-point conformal correlators in the WZW model. Preprint MPI/98-51, 1989Google Scholar
  31. 31.
    Schechtman, V., Varchenko, A.: Invet. Math.106, 139–194 (1991)CrossRefGoogle Scholar
  32. 32.
    Lawrence, R.: Homology representations of braid groups. Thesis, Oxford University, 1989Google Scholar
  33. 33.
    Date, E., Jimbo, M., Matsuo, A., Miwa, T.: Int. J. Mod. Phys.B4, 1049–1057 (1990)CrossRefGoogle Scholar
  34. 34.
    Matsuo, A.: Commum. Math. Phys.134, 65–77 (1990)Google Scholar
  35. 35.
    Awata, H., Tsuchiya, A., Yamada, Y.: Nucl. Phys.B365, 680–696 (1991)Google Scholar
  36. 36.
    Babujian, H.M.: Off-shell Bethe ansatz equation and N-point correlators in the SU(2) WZNW theory. Preprint Bonn-HE-93-22Google Scholar
  37. 37.
    Babujian, H.M., Flume, R.: Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik-Zamolodchikov equations. Preprint Bonn-HE-93-30Google Scholar
  38. 38.
    Reshetikhin, N.: Lett. Math. Phys.26, 153–165 (1992)CrossRefGoogle Scholar
  39. 39.
    Reshetikhin, N., Varchenko, A.: Quasiclassical asymptotics of solutions to the KZ equations. PreprintGoogle Scholar
  40. 40.
    Feigin, B., Frenkel, E.: Commun. Math. Phys.128, 161–189 (1990)CrossRefGoogle Scholar
  41. 41.
    Bouwknegt, P., McCarthy, J., Pilch, K.: Commun. Math. Phys.131, 125–155 (1990)Google Scholar
  42. 42.
    Drinfeld, V., Sokolov, V.: Sov. Math. Dokl.23, 457–462 (1981)Google Scholar
  43. 43.
    Drinfeld, V., Sokolov, V.: J. Sov. Math.30, 1975–2035 (1985)Google Scholar
  44. 44.
    Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. Yukawa Institute Preprint YITP/K-1036, hep-th 9310022. To appear in Proceedings of the Summer School “Integrable Systems and Quantum Groups”, Montecatini Terme, Italy, June 1993, Lect. Notes in Math., Springer (1993)Google Scholar
  45. 45.
    Feigin, B., Frenkel, E.: Commun. Math. Phys.137, 617–639 (1991)Google Scholar
  46. 46.
    Borcherds, R.: Proc. Natl. Acad. Sci. USA,83, 3068–3071 (1986)Google Scholar
  47. 47.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. New York: Academic Press. 1988Google Scholar
  48. 48.
    Frenkel, I., Zhu, Y.: Duke Math. J.66, 123–168 (1992)CrossRefGoogle Scholar
  49. 49.
    Reshetikhin, N.: Theor. Math. Phys.63, 347 (1985)Google Scholar
  50. 50.
    Feigin, B., Frenkel, E.: Generalized KdV flows and nilpotent subgroups of affine Kac-Moody groups. Preprint, 1993, hep-th/9311171.Google Scholar
  51. 51.
    Varchenko, A.:L Multidimensional hypergeometrioc functions and representation theory of Lie algebras and quantum groups. Preprint, 1992Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Boris Feigin
    • 1
  • Edward Frenkel
    • 2
  • Nikolai Reshetikhin
    • 3
  1. 1.Landau Institute for Theoretical PhysicsMoscowRussia
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA
  3. 3.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations