Communications in Mathematical Physics

, Volume 143, Issue 3, pp 501–525 | Cite as

A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description

  • E. Caglioti
  • P. L. Lions
  • C. Marchioro
  • M. Pulvirenti
Article

Abstract

We consider the canonical Gibbs measure associated to aN-vortex system in a bounded domain Λ, at inverse temperature\(\widetilde\beta \) and prove that, in the limitN→∞,\(\widetilde\beta \)/N→β, αN→1, where β∈(−8π, + ∞) (here α denotes the vorticity intensity of each vortex), the one particle distribution function ϱN = ϱNx,x∈Λ converges to a superposition of solutions ϱα of the following Mean Field Equation:
$$\left\{ {\begin{array}{*{20}c} {\varrho _{\beta (x) = } \frac{{e^{ - \beta \psi } }}{{\mathop \smallint \limits_\Lambda e^{ - \beta \psi } }}; - \Delta \psi = \varrho _\beta in\Lambda } \\ {\psi |_{\partial \Lambda } = 0.} \\ \end{array} } \right.$$

Moreover, we study the variational principles associated to Eq. (A.1) and prove thai, when β→−8π+, either ϱβ → δx0 (weakly in the sense of measures) wherex0 denotes and equilibrium point of a single point vortex in Λ, or ϱβ converges to a smooth solution of (A.1) for β=−8π. Examples of both possibilities are given, although we are not able to solve the alternative for a given Λ. Finally, we discuss a possible connection of the present analysis with the 2-D turbulence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio, S. Hoegh-Krohn, R.: Phys. Rep.20, 585–595 (1979)Google Scholar
  2. 2.
    Albeverio, S., Hoegh-Krohn, R., Merlini, D.: Some remarks on Euler flows associated to generalized random fields and Coulomb systems. Bibos Preprint, 1985Google Scholar
  3. 3.
    Arnold, V.I.: Dokl. Nat. Nauk.162, 773–777 (1965)Google Scholar
  4. 4.
    Arnold, V.I.: Am. Math. Soc. Transl.79, 267–269 (1969)Google Scholar
  5. 5.
    Bahri, A., Coron, J.M.: C.R. Acad. Sci. Paris (1985)Google Scholar
  6. 6.
    Benfatto, G., Picco, P., Pulvirenti, M.: J. Stat. Phys.46, 729 (1987)CrossRefGoogle Scholar
  7. 7.
    Benzi, R., Patarnello, S., Santangelo, P.: Europhys. Lett.3, 811–818 (1987)Google Scholar
  8. 8.
    Benzi, R., Patarnello, S., Santangelo, P.: J. Phys. A21, 1221–1237 (1988)Google Scholar
  9. 9.
    Boldrighini, C., Frigio, S.: Att. Sem. Mat. Fis. Univ. Modena27, 106–125 (1978), and Commun. Math. Phys.72, 55–76 (1980)Google Scholar
  10. 10.
    Brézis, H., Peletier, L.A.: Asymptotics for elliptic equations involving critical growth. In: Partial differential equations and the calculus of variations, Vol. I. Basel: Birkhäuser 1989Google Scholar
  11. 11.
    Caprino, S., De Gregorio, S.: Math. Meth. Appl. Sci.7, 55–70 (1985)Google Scholar
  12. 12.
    Chang, S.Y.A., Yang, P.: Acta Math.159 (1988)Google Scholar
  13. 13.
    Chang, S.Y.A., Yang, P.: J. Diff. Geom.23 (1988)Google Scholar
  14. 14.
    Chen, W., Ding, W.: Trans. A.M.S.303 (1987)Google Scholar
  15. 15.
    DiPerna, R.J., Majda, A.: Commun. Math. Phys.108, 667–689 (1987)CrossRefGoogle Scholar
  16. 16.
    DiPerna, R.J., Majda, A.: Commun. Pure Appl. Math.40, 301–345 (1987)Google Scholar
  17. 17.
    Ekeland, I.: Bull. A.M.S.1, 443–474 (1979)Google Scholar
  18. 18.
    Esteban, M.J., Lions, P.L.: Proc. Roy. Soc. Edin.83, 1–14 (1982)Google Scholar
  19. 19.
    Fröhlich, J., Ruelle, D.: Commun. Math. Phys.87, 1–36 (1982)CrossRefGoogle Scholar
  20. 20.
    Gallavotti, G.: Problèmes ergodiques de la mécanique classique. Cours de 3e cycle, Physique, E.P.F. Lausanne (1976)Google Scholar
  21. 21.
    Gidas, B., Ni, W.M., Nirenberg, L.: Commun. Math. Phys.68, 203–243 (1979)CrossRefGoogle Scholar
  22. 22.
    Gogny, D., Lions, P.L.: RAIRO Modél. Math. Anal. Num.23, 137–153 (1989)Google Scholar
  23. 23.
    Gustaffsson, B.: On the motion of a vortex in two-dimensional flow of an ideal fluid in simply and multiply connected domains. Tech. Rep. Dep. of Math., Royal Inst. of Technology, Stockholm (1979)Google Scholar
  24. 24.
    Haegi H.R.: Compositio Math.8, 81–111 (1951)Google Scholar
  25. 25.
    Han, Z.C.: On some nonlinear ordinary and partial differential equations. Ph.D. thesis, New-York University, 1989Google Scholar
  26. 26.
    Hong, C.: Proc. A.M.S.87, (1986)Google Scholar
  27. 27.
    Hopf, E.: J. Rat. Mech. Anal.1, 87–123 (1952)Google Scholar
  28. 28.
    Lions, P.L.: Rev. Mat. Iberoamericana1, 145–201 (1985)Google Scholar
  29. 29.
    Lions, P.L.: Commun. Math. Phys.109, 33–57 (1987)CrossRefGoogle Scholar
  30. 30.
    Marchioro, C., Pulvirenti, M.: Commun. Math. Phys.100, 343–354 (1985)CrossRefGoogle Scholar
  31. 31.
    Messer, J., Spohn, H.: J. Stat. Phys.29, 561–578 (1982)CrossRefGoogle Scholar
  32. 32.
    Moser, J.: Indiana Univ. Math. J.20, 1077–1092 (1971)CrossRefGoogle Scholar
  33. 33.
    Onofri, E.: Commun. Math. Phys.86, 321–326 (1982)CrossRefGoogle Scholar
  34. 34.
    Onsager, L.: Suppl. Nuovo Cim.6, 279 (1949)Google Scholar
  35. 35.
    Pohozaev, S.I.: Sov. Math. Dokl.6, 1408–1411 (1965)Google Scholar
  36. 36.
    Pulvirenti, M.: On invariant measures for the 2-D Euler flow. In: Mathematical aspects of vortex dynamics. Caflisch, R. (ed.) SIAM Philadelphia (1989)Google Scholar
  37. 37.
    Rey, O.: J. Funct. Anal.89, 1–52 (1990)CrossRefGoogle Scholar
  38. 38.
    Ruelle, D.: Statistical mechanics, New York: Benjamin 1969Google Scholar
  39. 39.
    Sacks, J., Uhlenbeck, K.: Ann. Math.113, 1–24 (1981)Google Scholar
  40. 40.
    Struwe, M.: Math. Z.187, 511–517 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • E. Caglioti
    • 1
  • P. L. Lions
    • 2
  • C. Marchioro
    • 3
  • M. Pulvirenti
    • 4
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.CeremadeUniversité Paris-DauphineParisFrance
  3. 3.Dipartimento di MatematicaUniversitá di Roma “La Sapienza”RomaItaly
  4. 4.Dipartimento di MatematicaUniversitá di L'AquilaItaly

Personalised recommendations