Advertisement

Communications in Mathematical Physics

, Volume 146, Issue 1, pp 91–102 | Cite as

\(\bar \partial \)-Torsion for complex manifolds and the adiabatic limit-Torsion for complex manifolds and the adiabatic limit

  • Stephane Laederich
Article
  • 47 Downloads

Abstract

We consider a complex fibration\(F \to M\xrightarrow{\pi }B\) and pull back bundlesE1 andE2 overM. Using the adiabatic limit idea, we compute the metric invariantTp(E1)/Tp(E2), whereTp(E) denotes the complex Ray-Singer torsion.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABI Atiyah, M., Bott, R.: A Lefschetz fixed point formula for elliptic complexes I. Ann. Math.86, 374–407 (1967)Google Scholar
  2. ABII Atiyah, M., Bott, R.: A Lefschetz fixed point formula for elliptic complexes II. Ann. Math.88, 451–491 (1968)Google Scholar
  3. BC Bismut, J. M., Cheeger, J.: λ-invariants and their adiabatic limits. J. Am. Math. Soc.2, 33–70 (1988)Google Scholar
  4. BGSI Bismut, J. M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles I, Bott Chern forms and analytic torsion. Commun. Math. Phys.115, 49–78 (1988)CrossRefGoogle Scholar
  5. BGSII Bismut, J. M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles II, Direct images and Bott Chern forms. Commun. Math. Phys.115, 79–126 (1988)CrossRefGoogle Scholar
  6. BGSIII Bismut, J. M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles III, Quillen metrics on holomorphic determinants. Commun. Math. Phys.115, 301–351 (1988)CrossRefGoogle Scholar
  7. BT Bott, R., Tu, L.: Differential forms in algebraic topology. GTM,82, Berlin, Heidelberg, New York: Springer 1986Google Scholar
  8. BV Bismut, J. M., Vasserot, E.: The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle. Commun. Math. Phys.115, 355–367 (1989)CrossRefGoogle Scholar
  9. C Cheeger, J.: λ-invariants, the adiabatic approximation and conical singularities. J. Diff. Geom.26, 175–221 (1987)Google Scholar
  10. CGT Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace Operator and the geometry of complete Riemanian manifolds. J. Diff. Geom.17, 15–53 (1982)Google Scholar
  11. CF Crew, R., Fried, D.: Nonsingular holomorphic flows. Top.25, (4) 471–473 (1986)CrossRefGoogle Scholar
  12. DI Dai, X.: Adiabatic limits non-multiplicativity of signature and the Leray spectral sequence. MIT Preprint (1990)Google Scholar
  13. DII Dai, X.: Geometric invariants and their adiabatic limits, MIT Preprint (1990)Google Scholar
  14. FA Fay, J.: Analytic torsion and Prym differentials. Ann. Math. Studies. Princeton, NJ: Princeton University Press 1981Google Scholar
  15. DEM Dai, X., Epstein, C., Melrose, R.: Adiabatic limit of the Ray-Singer analytic torsion, in preparationGoogle Scholar
  16. Fo Forman, R.: Personal communicationGoogle Scholar
  17. Fr Fried, D.: Lefschetz formulas for flows. Contemp. Math.58, III 19–69 (1987)Google Scholar
  18. G Gilkey, P.: Invariant theory, the heat equation and the Atiyah Singer index theorem. Publish or Perish11, (1984)Google Scholar
  19. Ko Kotake, T.: The fixed point theorem of Atiyah Bott via parabolic operators. Commun. Pure Appl. Math.XXII, 789–806 (1969)Google Scholar
  20. MM Mazzeo, R., Melrose, R.: The adiabatic limit, Hodge Cohomology and Leray's spectral sequence for a fibration. J. Diff. Geom.31, 185–213 (1990)Google Scholar
  21. RSI Ray, D., Singer, I.: R-torsion and the Laplacian on Riemannian Manifolds. Adv. Math.7, 145–210 (1971)CrossRefGoogle Scholar
  22. RSII Ray, D., Singer, I.: Analytic torsion for complex manifolds. Ann. Math.108, 1–39 (1978)Google Scholar
  23. Se Seeley, R. T.: Complex powers of an Elliptic Operator. Proc. Symp. Pure Math.10, 288–307 (1967)Google Scholar
  24. Sh Shubin, M. A.: Pseudodifferential operators and spectral theory. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  25. T Tangerman, F.: Reidemeister torsion and analytic torsion: Announcement of a proof of the Ray Singer conjecture using the Witten Complex, Courant Institute (1989)Google Scholar
  26. We Wells, R. O.: Differential analysis on complex manifolds. GTM vol.65. Berlin, Heidelberg, New York: Springer 1986Google Scholar
  27. Wi Witten, E.: Supersymmetry and Morse theory. Adv. Math.4, 109–126 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Stephane Laederich
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations