Communications in Mathematical Physics

, Volume 144, Issue 3, pp 443–490 | Cite as

Finitely correlated states on quantum spin chains

  • M. Fannes
  • B. Nachtergaele
  • R. F. Werner
Article

Abstract

We study a construction that yields a class of translation invariant states on quantum spin chains, characterized by the property that the correlations across any bond can be modeled on a finite-dimensional vector space. These states can be considered as generalized valence bond states, and they are dense in the set of all translation invariant states. We develop a complete theory of the ergodic decomposition of such states, including the decomposition into periodic “Néel ordered” states. The ergodic components have exponential decay of correlations. All states considered can be obtained as “local functions” of states of a special kind, so-called “purely generated states,” which are shown to be ground states for suitably chosen finite range VBS interactions. We show that all these generalized VBS models have a spectral gap. Our theory does not require symmetry of the state with respect to a local gauge group. In particular we illustrate our results with a one-parameter family of examples which are not isotropic except for one special case. This isotropic model coincides with the one-dimensional antiferromagnet, recently studied by Affleck, Kennedy, Lieb, and Tasaki.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Accardi, L.: Topics in quantum probability. Phys. Rep.77, 169–192 (1981)Google Scholar
  2. 2.
    Accardi, L., Frigerio, A.: Markovian Cocycles. Proc. R. Ir. Acad.83A(2), 251–263 (1983)Google Scholar
  3. 3.
    Affleck, I.: Large-n limit ofSU(n) quantum “spin” chains. Phys. Rev. Lett.54, 966–969 (1985)Google Scholar
  4. 4.
    Affleck, I., Lieb, E. H.: A proof of part of Haldane's conjecture on quantum spin chains. Lett. Math. Phys.12, 57–69 (1986)Google Scholar
  5. 5.
    Affleck, I., Kennedy, T., Lieb, E. H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys.115, 477–528 (1988)Google Scholar
  6. 6.
    Affleck, I., Lieb, E. H., Kennedy, T., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett.59, 799–802 (1987)Google Scholar
  7. 7.
    Anderson, P.: The resonating valence bond state in La2CuO4 and superconductivity. Science235, 1196–1198 (1987)Google Scholar
  8. 8.
    Araki, H.: Gibbs states of a one-dimensional quantum lattice. Commun. Math. Phys.14, 120–157 (1969)Google Scholar
  9. 9.
    Arovas, D. P., Auerbach, A., haldane, F. D. M.: Extended heisenberg models of antiferromagnetism: Analogies to the fractional quantum Hall effect. Phys. Rev. Lett.60, 531–534 (1988)Google Scholar
  10. 10.
    Arveson, W.: Subalgebras ofC *-algebras. Acta Math.123, 141–224 (1969)Google Scholar
  11. 11.
    Babujian, H. M.: Exact solution of the one-dimensional isotropic heisenberg chain with arbitrary spins. Phys. Lett.90A, 479–482 (1982)Google Scholar
  12. 12.
    Batchelor, M. T., Barber, M. N.: Spin-s quantum chains and Temperley-Lieb algebras. J. Phys.A23, L15-L21 (1990)Google Scholar
  13. 13.
    Batchelor, M. T., Mezincescu, L., Nepmechie, R., Rittenberg, V.:q-deformations of theO(3)symmetric spin 1 chain. J. Phys.A23, L141-L144 (1990)Google Scholar
  14. 14.
    Bethe, H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys.71, 205–226 (1931)Google Scholar
  15. 15.
    Blackwell, D.: The entropy of functions of finite Markov chains. Transactions of the first Prague conference on information theory, statistical decision functions and random processes. Publishing House of the Czechoslovak Academy of Sciences, Prague 1957Google Scholar
  16. 16.
    Bratteli, O., Robinson, D. W.: Operator algebras and quantum statistical mechanics, 2 vols. Berlin, Heidelberg, New York: Springer 1979 and 1981Google Scholar
  17. 17.
    van den Broeck, P. M.: Exact value of the ground state energy of the linear antiferromagnetic Heisenberg chain with nearest and next-nearest neighbor interactions. Phys. Lett.77A, 261–262 (1980)Google Scholar
  18. 18.
    Chang, K., Affleck, I., Hayden, G. W., Soos, Z. G.: A study of the bilinear-biquadratic spin 1 antiferromagnetic chain using the valence-bond basis. J. Phys.C1, 153–167 (1989)Google Scholar
  19. 19.
    Caspers, W. J.: Exact ground states for a class of linear antiferromagnetic spin systems. Physica115A, 275–280 (1982)Google Scholar
  20. 20.
    Caspers, W. J., Magnus, W.: Exact ground states for a class of linear quantum spin systems. Physica119A, 291–294 (1983)Google Scholar
  21. 21.
    Caspers, W. J., Magnus, W.: Some exact excited states in a linear antiferromagnetic spin system. Phys. Lett.88A, 103–105 (1982)Google Scholar
  22. 22.
    Chayes, J., Chayes, L., Kivelson, S.: Valence bond ground states in a frustrated two-dimensional spin 1/2 Heisenberg antiferromagnet. Commun. Math. Phys.123, 53–83 (1989)Google Scholar
  23. 23.
    Choi, M. D.: A Schwarz inequality for positive linear maps onC *-algebras. Illinois J. Math.18, 565–574 (1974)Google Scholar
  24. 24.
    Choi, M. D., Effros, E.: Injectivity and operator spaces. J. Funct. Anal.24, 156–209 (1977)Google Scholar
  25. 25.
    Dyson, F. J., Lieb, E. H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys.18, 335–383 (1978)Google Scholar
  26. 26.
    Edmonds, A. R.: Angular momentum in quantum mechanics. Princeton, NJ: Princeton University Press 1957Google Scholar
  27. 27.
    Effros, E.: “Aspects of non-commutative order”. In: Araki, H., Kadison, R. V. (eds).C *-algebras and applications to physics. Lect. Notes Math. vol.650, Berlin Heidelberg New York: Springer 1978Google Scholar
  28. 28.
    Fannes, M., Nachtergaele, B., Slegers, L.: Functions of Markov processes and algebraic measures. Rev. Math. Phys. (in press)Google Scholar
  29. 29.
    Fannes, M., Nachtergaele, B., Werner, R. F.: Exact ground states of quantum spin chains. Europhys. Lett.10, 633–637 (1989)Google Scholar
  30. 30.
    Fannes, M., Nachtergaele, B., Werner, R. F.: Valence bond states on quantum spin chains as ground states with spectral gap. J. Phys. A, Math. Gen.24, L185-L190 (1991)Google Scholar
  31. 31.
    Fannes, M., Nachtergaele, B., Werner, R. F.: Entropy estimates for finitely correlated states. Preprint KUL-TF-91/09Google Scholar
  32. 32.
    Fannes, M., Nachtergaele, B., Werner, R. F.: Ground states of VBS models on Cayley trees. J. Stat. Phys. (in press)Google Scholar
  33. 33.
    Fannes, M., Nachtergaele, B., Werner, R. F.: Finitely correlated pure states and their symmetries. In preparationGoogle Scholar
  34. 34.
    Fannes, M., Verbeure, A.: On solvable models in classical lattice systems. Commun. Math. Phys.96, 115–124 (1984)Google Scholar
  35. 35.
    Freitag, W.-D., Müller-Hartmann, E.: Complete analysis of two-spin correlations of valence bond solid chains for all integer spins. Z. Physik B83, 381–390 (1991)Google Scholar
  36. 36.
    Groh, U.: The peripheral point spectrum of Schwarz operators onC *-algebras. Math. Z.176, 311–318 (1981)Google Scholar
  37. 37.
    Hagiwara, M., Katsuma, K., Affleck, I., Halperin, B. I., Renard, J. P.: Observation ofS=1/2 degrees of freedom in anS=1 linear chain Heisenberg antiferromagnet. Phys. Rev. Lett.25, 3181–3184 (1990)Google Scholar
  38. 38.
    Haldane, F. D. M.: Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with theO(3) nonlinear sigma model. Phys. Lett.93A, 464–468 (1983)Google Scholar
  39. 39.
    Hammermesh, M.: Group theory and its applications to physical problems. Reading, Mass.: Addison-Wesley 1962Google Scholar
  40. 40.
    Hudson, R. L., Moody, G. R.: Locally normal symmetric states and an analogue of de Finetti's theorem. Z. Wahrsch. Verw. Gebiete33, 343–351 (1976)Google Scholar
  41. 41.
    Hulthén, L.: Arkiv. Math. Astron. Fysik26A, (1938)Google Scholar
  42. 42.
    Ionescu-Tulcea, A., Ionescu-Tulcea, C.: Topics in the theory of lifting. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  43. 43.
    Iske, P. L., Caspers, W. J.: Exact ground states of one-dimensional valence-bond-solid Hamiltonians. Mod. Phys. Lett.B1, 231–237 (1987)Google Scholar
  44. 44.
    Iske, P. L., Caspers, W. J.: Scaling properties of valence-bond-solids with a linear structure. Mod. Phys. Lett.B2, 1223–1233 (1988)Google Scholar
  45. 45.
    Jacobson, N.: Basic Algebra I. San Francisco: Freeman 1974Google Scholar
  46. 46.
    Kennedy, T., Lieb, E. H., Tasaki, H.: A two-dimensional isotropic quantum antiferromagnet with unique disordered ground state. J. Stat. Phys.53, 383–415 (1988)Google Scholar
  47. 47.
    Kennedy, T., Lieb, E. H., Shastry, B. S.: Existence of Néel order in some spin 1/2 Heisenberg antiferromagnets. J. Stat. Phys.53, 1019–1030 (1988)Google Scholar
  48. 48.
    Klein, D. J.: Exact ground states for a class of antiferromagnetic Heisenberg models with short range interactions. J. Phys.A15, 661–671 (1982)Google Scholar
  49. 49.
    Klümper, A.: The spectra ofq-state vertex models and related antiferromagnetic quantum spin chains. J. Phys.A23, 809–823 (1990).Google Scholar
  50. 50.
    Knabe, S.: Energy gaps and elementary excitations for Certain VBS-Quantum Antiferromagnets. J. Stat. Phys.52, 627–638 (1988)Google Scholar
  51. 51.
    Lieb, E., Schulz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys.16, 407–466 (1961)Google Scholar
  52. 52.
    Lieb, E., Mattis, D.: Ordering Energy Levels of Interacting Spin Systems. J. Math. Phys.3, 749–751 (1962)Google Scholar
  53. 53.
    Majumdar, C. K., Ghosh, D. K.: On next nearest-neighbor interaction in linear chains, I, II. J. Math. Phys.10, 1388–1398, and 1399–1402 (1969)Google Scholar
  54. 54.
    Majumdar, C. K.: Antiferromagnetic model with known ground state. J. Phys.C3, 911–915 (1970)Google Scholar
  55. 55.
    Matsui, T.: Uniqueness of the translationally invariant ground state in quantum spin systems. Commun. Math. Phys.126, 453–467 (1990)Google Scholar
  56. 56.
    Nachtergaele, B.: Working with Quantum Markov States and their Classical Analogues. In: Accardi, L., von Waldenfelds, W. (eds.). Quantum probability and applications V, Leeture Notes in Mathematics, vol. 442. Berlin, Heidelberg, New York: Springer 1990Google Scholar
  57. 57.
    Schmitt, L., Wittstock, G.: Kernel representation of completely positive Hilbert-Schmidt operators on standard forms. Arch. Math.38, 453–458 (1982)Google Scholar
  58. 58.
    Spitzer, F.: Markov random fields and Gibbs ensembles. Am. Math. Monthly78, 142–154 (1971)Google Scholar
  59. 59.
    Stinespring, W. F.: Positive functions onC *-algebras. Proc. Am. Math. Soc.6, 211–216 (1955)Google Scholar
  60. 60.
    Størmer, E.: Positive maps ofC *-algebras. In: Hartkämper, A., Neumann, H. (eds.). Foundations of quantum mechanics and ordered linear spaces. Lecture Notes in Physics, vol. 29, Berlin, Heidelberg, New York: Springer 1974Google Scholar
  61. 61.
    Størmer, E.: Symmetric states of infinite tensor products ofC *-algebras. J. Funct. Anal.3, 48–68 (1969)Google Scholar
  62. 62.
    Takesaki, M.: Theory of operator algebras I. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  63. 63.
    Takhtajan, L. A.: The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins. Phys. Lett.87A, 479–482 (1982)Google Scholar
  64. 64.
    Werner, R. F.: Quantum states with Einstein-Rosen-Podolsky correlations admitting a hidden-variable model. Phys. Rev. A40, 4277–4281 (1989)Google Scholar
  65. 65.
    Werner, R. F.: Remarks on a quantum state extension problem. Lett. Math. Phys.19, 319–326 (1990)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Fannes
    • 1
    • 2
  • B. Nachtergaele
    • 3
    • 4
  • R. F. Werner
    • 6
  1. 1.Inst. Theor. FysicaUniversiteit LeuvenLeuvenBelgium
  2. 2.Bevoegdverklaard NavorserN.F.W.O.Belgium
  3. 3.Depto de FísicaUniversidad de ChileSantiago de Chile
  4. 4.Onderzoeker I.I.K.W.Belgium
  5. 5.Universiteit LeuvenBelgium
  6. 6.Dublin Institute for Advanced StudiesDublin 4Ireland
  7. 7.Universität OsnabrückFRG

Personalised recommendations