Communications in Mathematical Physics

, Volume 143, Issue 2, pp 415–429 | Cite as

The dispersionless Lax equations and topological minimal models

  • I. Krichever


It is shown that perturbed rings of the primary chiral fields of the topological minimal models coincide with some particular solutions of the dispersionless Lax equations. The exact formulae for the tree level partition functions ofAn topological minimal models are found. The Virasoro constraints for the analogue of the τ-function of the dispersionless Lax equation corresponding to these models are proved.


Neural Network Statistical Physic Complex System Partition Function Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eguchi, T., Yang, S.-K.:N=2 Superconformal models as topological field theories. Tokyo preprint UT-564Google Scholar
  2. 2.
    Witten, E.: Commun. Math. Phys.118, 411 (1988)CrossRefGoogle Scholar
  3. 3.
    Vafa, C., Warner, N.P.: Phys. Lett.218B, 51 (1989); Lerche, W., Vafa, C., Warner, N.P.: Nucl. Phys.B 324, 427 (1989); Martinec, E.: Phys. Lett.217 B, 431 (1989); Criticality, catastrophe and compactifications. V.G. Knizhnik memorial volume, 1989Google Scholar
  4. 4.
    Li, K.: Topological gravity with minimal matter. Caltech preprint CALT-68-1662Google Scholar
  5. 4a.
    Li, K.: Recursion relations in topological gravity with minimal matter. Caltech preprint CALT-68-1670Google Scholar
  6. 5.
    Dijkgraaf, R., Witten, E.: Nucl. Phys.B342, 486 (1990)CrossRefGoogle Scholar
  7. 6.
    Witten, E.: Commun. Math. Phys.117, 353 (1988)CrossRefGoogle Scholar
  8. 7.
    Gross, D., Migdal, A.: Nucl. Phys.B 340, 333 (1990)CrossRefGoogle Scholar
  9. 8.
    Banks, T., Douglas, M., Seiberg, N., Shenker, S.: Phys. Lett.238 B, 279 (1990)Google Scholar
  10. 9.
    Douglas, M.: Phys. Lett.238 B, 176 (1990)Google Scholar
  11. 10.
    Dijkgraaf, R., Verlinde, H, Verlinde, E.: Topological strings ind=1. Princeton preprint PUPT-1204, IASSNS-HEP-90/71Google Scholar
  12. 11.
    Krichever, I.M.: Funct. Anal. Appl.22, No. 3, 37 (1988)Google Scholar
  13. 11a.
    Krichever, I.M.: Uspekhi Mat. Nauk44, No. 2, 121 (1989)Google Scholar
  14. 12.
    Krichever, I.M.: Sov. Dokl.227, No. 2, 291 (1976)Google Scholar
  15. 12a.
    Krichever, I.M.: Funct. Anal. Appl.11, No. 3, 15 (1977)CrossRefGoogle Scholar
  16. 13.
    Dobrokhotov, S.Yu., Maslov, V.P.: Sov. Scientific Reviews. Math. Phys. Rev.3, 221 (1982); OPA AmsterdamGoogle Scholar
  17. 13a.
    Flashka, H., Forest, M., McLaughlin, D.: Commun. Pure and Appl. Math.33, No. 6, 739 (1980)Google Scholar
  18. 14.
    Krichever, I.M.: The Hiezenber relations for ordinary differential operators. Preprint ETH Zürich, 1990Google Scholar
  19. 15.
    Zakharov, V.E.: Funk. Anal. Appl.14, 89 (1980)CrossRefGoogle Scholar
  20. 16.
    Kodama, Y., Gibbons, J.: Integrability of the dispersionless KP hierarchy. Proceedings of Workshop on Nonlinear and Turbulent Processes in Physics. Kiev, 1989Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • I. Krichever
    • 1
  1. 1.Landau Institute for Theoretical PhysicsUSSR Academy of SciencesMoscowUSSR

Personalised recommendations