Communications in Mathematical Physics

, Volume 134, Issue 3, pp 647–651 | Cite as

Breaking of periodicity at positive temperatures

  • A. C. D. van Enter
  • J. Miekisz
Article

Abstract

We discuss a classical lattice gas model without periodic or quasiperiodic ground states. The only ground state configurations of our model are nonperiodic Thue-Morse sequences. We show that low temperature phases of such models can be ordered. In fact, we prove the existence of an ordered (nonmixing) low temperature translation invariant equilibrium state which has nonperiodic Gibbs states in its extremal decomposition.

Keywords

Neural Network Nonlinear Dynamics Quantum Computing Classical Lattice Temperature Phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radin, C.: Tiling, periodicity, and crystals. J. Math. Phys.26, 1342–1344 (1985)Google Scholar
  2. 2.
    Radin, C.: Crystals and quasicrystals: a lattice gas model. Phys. Lett.114A, 381–383 (1986)Google Scholar
  3. 3.
    Radin, C.: Crystals and quasicrystals: a continuum model. Commun. Math. Phys.105, 385–390 (1986)CrossRefGoogle Scholar
  4. 4.
    Miękisz, J., Radin, C.: The unstable chemical structure of the quasicrystalline alloys. Phys. Lett.119A, 133–134 (1986)Google Scholar
  5. 5.
    Miękisz, J.: Many phases in systems without periodic ground states. Commun. Math. Phys.107, 577–586 (1986)CrossRefGoogle Scholar
  6. 6.
    Miękisz, J.: Classical lattice gas model with a unique nondegenerate but unstable periodic ground state configuration. Commun. Math. Phys.111, 533–538 (1987)CrossRefGoogle Scholar
  7. 7.
    Radin, C.: Low temperature and the origin of crystalline symmetry. Int. J. Mod. Phys. B1, 1157–1191 (1987)CrossRefGoogle Scholar
  8. 8.
    Miękisz, J.: Toward a microscopic model of a quasicrystal. Phys. Lett.138A, 415–416 (1989)Google Scholar
  9. 9.
    Miękisz, J.: A microscopic model with quasicrystalline properties. To appear in J. Stat. Phys. (1990)Google Scholar
  10. 10.
    Ruelle, D.: Thermodynamic Formalism Sect. 4.15. New York: Addison-Wesley 1978Google Scholar
  11. 11.
    Schlijper, A.G.: Tiling problems and undecidability in the cluster variation method. J. Stat. Phys.50, 689–714 (1988)CrossRefGoogle Scholar
  12. 12.
    Berger, R.: The undecidability of the domino problem. Mem. Am. Math. Soc.66, (1966)Google Scholar
  13. 13.
    Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math.12 177–209 (1971)CrossRefGoogle Scholar
  14. 14.
    Myers, D.: Nonrecursive tiling of the plane II. J. Symb. Log.39, 286–294 (1974)Google Scholar
  15. 15.
    Grunbaum, B., Shephard, G.C.: Tilings and patterns. New York: Freeman 1986Google Scholar
  16. 16.
    Bak, P., Bruinsma, R.: One-dimensional Ising model and the complete Devil's staircase. Phys. Rev. Lett.49, 249–251 (1982)CrossRefGoogle Scholar
  17. 17.
    Aubry, S.: Exact models with a complete Devil's staircase. J. Phys. C16, 2497–2508 (1983)Google Scholar
  18. 18.
    Gardner, C., Miekisz, J., Radin, C., van Enter, A.C.D.: Fractal symmetry in an Ising model. J. Phys. A22, L1019-L1023 (1989)Google Scholar
  19. 19.
    Keane, M.: Generalized Morse sequences. Zeit. Wahr.10, 335–353 (1968)Google Scholar
  20. 20.
    Israel, R.B.: Existence of phase transitions for long-range interactions. Commun. Math. Phys.43, 59–68 (1975)CrossRefGoogle Scholar
  21. 21.
    Israel, R.B.: Convexity in the theory of lattice gases. Chap. 5, Princeton: NJ: Princeton, University Press 1979Google Scholar
  22. 22.
    Georgii, H.O.: Gibbs measures and phase transitions. Chap. 16. Berlin, New York: de Gruyter 1988Google Scholar
  23. 23.
    Bishop, E., Phelps, R.P.: The support functionals of a convex set. AMS Proceedings of Symposia in Pure Mathematics.7, 27–35 (1963)Google Scholar
  24. 24.
    Miękisz, J.: How low temperature causes long-range order. J. Phys. A: Math. Gen.21, L529-L531 (1988)CrossRefGoogle Scholar
  25. 25.
    Miękisz, J., Radin, C.: Why solids are not really crystalline. Phys. Rev. B39, 1950–1952 (1989)CrossRefGoogle Scholar
  26. 26.
    Radin, C.: Ordering in lattice gases at low temperature. J. Phys. A: Math. Gen.22, 317–319 (1989)CrossRefGoogle Scholar
  27. 27.
    Ruelle, D.: On manifolds of phase coexistence. Theor. Math. Phys.30, 24–29 (1977)CrossRefGoogle Scholar
  28. 28.
    Daniëls, H.A.M., van Enter, A.C.D.: Differentiability properties of the pressure of lattice systems. Commun. Math. Phys.71, 65–76 (1980)CrossRefGoogle Scholar
  29. 29.
    van Enter, A.C.D.: Stability properties of phase diagrams in lattice systems. Groningen thesis (1981)Google Scholar
  30. 30.
    van Enter, A.C.D.: A note the stability of phase diagrams in lattice systems. Commun. Math. Phys.79, 25–32 (1981)CrossRefGoogle Scholar
  31. 31.
    Sokal, A.D.: More surprises in the general theory of lattice systems. Commun. Math. Phys.86, 327–336 (1982)CrossRefGoogle Scholar
  32. 32.
    Israel, R.B.: Generic triviality of phase diagrams in spaces of long-range interactions. Commun. Math. Phys.106, 459–466 (1986)CrossRefGoogle Scholar
  33. 33.
    Dobrushin R.L.: Gibbs state describing the coexistence of phases for the three-dimensional Ising model. Theor. Prob. Appl.17, 582–602 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. C. D. van Enter
    • 1
  • J. Miekisz
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Department of MathematicsUniversity of MissouriColumbiaUSA

Personalised recommendations