Communications in Mathematical Physics

, Volume 134, Issue 3, pp 555–585 | Cite as

Isospectral Hamiltonian flows in finite and infinite dimensions

II. Integration of flows
  • M. R. Adams
  • J. Harnad
  • J. Hurtubise


The approach to isospectral Hamiltonian flow introduced in part I is further developed to include integration of flows with singular spectral curves. The flow on finite dimensional Ad*-invariant Poisson submanifolds of the dual\((\widetilde{gl}(r)^ + )*\) of the positive part of the loop algebra\(\widetilde{gl}(r)\) is obtained through a generalization of the standard method of linearization on the Jacobi variety of the invariant spectral curveS. These curves are embedded in the total space of a line bundleTP1(C), allowing an explicit analysis of singularities arising from the structure of the image of a moment map\(\tilde J_r :M_{N,r} \times M_{N,r} \to (\widetilde{gl}(r)^ + )*\) from the space of rank-r deformations of a fixedN×N matrixA. It is shown how the linear flow of line bundles\(E_t \to \tilde S\) over a suitably desingularized curve\(\tilde S\) may be used to determine both the flow of matricial polynomialsL(λ) and the Hamiltonian flow in the spaceMN,r×MN,r in terms of θ-functions. The resulting flows are proved to be completely integrable. The reductions to subalgebras developed in part I are shown to correspond to invariance of the spectral curves and line bundles\(E_t \to \tilde S\) under certain linear or anti-linear involutions. The integration of two examples from part I is given to illustrate the method: the Rosochatius system, and the CNLS (coupled non-linear Schrödinger) equation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, M. R., Harnad, J., Previato, E.: Isopectral Hamiltonian flows in finite and infinite dimensions, I. Generalized Moser systems and moment maps into loop algebras. Commun. Math. Phys.117, 451–500 (1988)CrossRefGoogle Scholar
  2. 2.
    Adams, M. R., Harnad, J., Hurtubise, J.: Liouville generating functions for isospectral Hamiltonian flows in loop algebras. Integrable and Superintegrable Systems. Kupershmidt, B. (ed.) Singapore: World Scientific (in press 1990); Darboux coordinates and Liouville-Arnold integration in loop algebras. (In preparation)Google Scholar
  3. 3.
    Adler, M., van Moerbeke, P.: Completely integrable systems, euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980); Linearization of Hamiltonian systems, Jacobi varieties, and representation theory. Adv. Math.38, 318–379 (1980)CrossRefGoogle Scholar
  4. 4.
    Dubrovin, B. A.: Theta Functions and non-linear equations. Russ. Math. Surv.36, 11–92 (1981)Google Scholar
  5. 5.
    Dubrovin, B. A., Matveev, V. B., Novikov, S. P.: Non-linear equations of Korteweg de Vries type, finite zone linear operators, and abelian varieties. Russ. Math. Surv.31, 59–146 (1976)Google Scholar
  6. 6.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: John Wiley 1978Google Scholar
  7. 7.
    Gagnon, L., Harnad, J., Hurtubise, J., Winternitz, P.: Abelian integrals and the reduction method for an integrable Hamiltonian system. J. Math. Phys.26, 1605–1612 (1985)CrossRefGoogle Scholar
  8. 8.
    Guillemin, V., Sternberg, S.: The moment map and collective motion. Ann. Phys.127, 220–253 (1980)Google Scholar
  9. 9.
    Hitchin, N.: On the construction of monopoles. Commun. Math. Phys.89, 145–190 (1983)CrossRefGoogle Scholar
  10. 10.
    Hurtubise, J.: Rankr perturbations, algebraic curves and ruled surfaces, preprintGoogle Scholar
  11. 11.
    Krichever, I. M., Novikov, S. P.: Holomorphic bundles over algebraic curves and non-linear equations. Russ. Math. Surv.35, 6, 53–79 (1980)Google Scholar
  12. 12.
    Krichever, I. M.: Algebraic curves and commuting matrix differential operators. Funct. Anal. Appl.10, 144–146 (1976); Methods of algebraic geometry in the theory of non-linear equations. Russ. Math. Surv.32, 6, 198–213 (1977)Google Scholar
  13. 13.
    Moser, J.: Geometry of quadrics and spectral theory. The Chern symposium, Berkeley, June 1979; pp. 147–188. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  14. 14.
    Mumford, D.: Tata lectures on theta. II. Prog. Math. 43. Boston: Birkhäuser 1983Google Scholar
  15. 15.
    van Moerbeke, P., Mumford, D.: The spectrum of difference operators and algebraic curves. Acta Math.143, 93–154 (1979)Google Scholar
  16. 16.
    Previato, E.: Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke Math. J.52 Google Scholar
  17. 17.
    Reyman, A. G., Semenov-Tian-Shansky, M. A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II. Invent. Math.63, 423–432 (1981)CrossRefGoogle Scholar
  18. 18.
    Reyman, A. G., Semenov-Tian-Shansky, M. A., Frenkel, I. B.: Graded Lie algebras and completely integrable dynamical systems. Sov. Math. Doklady20, 811–814 (1979)Google Scholar
  19. 19.
    Serre, J. P.: Groupes algébriques et corps de classe. Paris: Hermann,Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. R. Adams
    • 1
  • J. Harnad
    • 2
    • 3
  • J. Hurtubise
    • 4
  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA
  2. 2.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada
  3. 3.Department of MathematicsConcordia UniversityMontréalCanada
  4. 4.Department of MathematicsMcGill UniversityMontréalCanada

Personalised recommendations