Journal of Chemical Ecology

, Volume 20, Issue 11, pp 2901–2915 | Cite as

Interactions betweenAlloxysta brevis (Hymenoptera, Cynipoidea, Alloxystidae) and honeydew-collecting ants: How an aphid hyperparasitoid overcomes ant aggression by chemical defense

  • Wolfgang Völkl
  • Gerhard Hübner
  • Konrad Dettner
Article

Abstract

Foraging females of the aphid hyperparasitoidAlloxysta brevis were attacked by honeydew-collecting workers of the antLasius niger at the first encounter. However, ants abandoned their attacks quickly, and foragingA. brevis remained unmolested for a subsequent time interval of approximately 5 min, which is long enough for the hyperparasitoid to oviposit successfully. Furthermore, freshly killed intactA. brevis were disregarded by ants, while decapitated specimens were readily removed. We present evidence thatA. brevis females release a mandibular gland secretion, which contains 6-methyl-5-hepten-2-one, actinidin, and unidentified iridoids, in response to an ant attack. This secretion functions both as a measure of self-defense if the female is seized by an ant worker and as a repellent, which prevents ant attacks during subsequent encounters. This is the first evidence for chemical defense in a hymenopterous parasitoid. It enablesA. brevis females to hyperparasitize ant-attended aphids that constitute a major proportion of their hosts and significantly reduces mortality by ectohyperparasitoids.

Key words

Hymenoptera Alloxystidae hyperparasitoids ants Formicidae interactions aggression chemical defense 6-methyl-5-hepten-2-one actinidin biological significance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, C.J. 1962. Effect of the ant,Lasius niger, on insects preying on small populations ofAphis fabae Scop. on bean plants.Ann. Appl. Biol. 50:669–679.Google Scholar
  2. Bartlett, B.R. 1961. The influence of ants upon parasites, predators and scale insects.Ann. Entomol. Soc. Am. 54:543–551.Google Scholar
  3. Bergström, G., andLöfqvist, J. 1970. Chemical basis for odour communication in four species ofLasius ants.J. Insect Physiol. 16:2353–2375.CrossRefGoogle Scholar
  4. Blum, M.S. 1981. Chemical Defenses of Arthropodes. Academic Press, New York.Google Scholar
  5. Bradley, G.A. 1973. Effect ofFormica obscuripes (Hymenoptera: Formicidae) on the predator-prey relationship betweenHyperaspis congressis (Coleoptera: Coccinellidae) andToumeyella numismaticum (Homoptera: Coccidae).Can. Entomol. 105:1113–1118.Google Scholar
  6. Cudjoe, A.R., Neuenschwander, P., andCopland, M.J.W. 1993. Interference by ants in biological control of the cassava mealybugPhenacoccus manihoti (Hemiptera: Pseudococcidae) in Ghana.Bull. Entomol. Res. 83:15–22.Google Scholar
  7. Davies, N.W., andMadden, J.L. 1985. Mandibular gland secretions of two parasitoid wasps (Hymenoptera: Ichneumonidae).J. Chem. Ecol. 11:1115–1127.CrossRefGoogle Scholar
  8. Dettner, K. 1983. Vergleichende Untersuchungen zur Wehrchemie und Drüsenmorphologie von Kurzflüglern aus dem Subtribus Philonthina (Coleoptera, Staphylinidae).Z. Naturforsch. 38c:319–328.Google Scholar
  9. Dettner, K., andLiepert, C. 1994. Chemical mimicry and camouflage.Annu. Rev. Entomol. 39:129–154.CrossRefGoogle Scholar
  10. Dettner, K., Schwinger, G., andWunderle, P. 1985. Sticky secretion from two pairs of defensive glands of rove beetleDelaster dichrous (Grav.) (Coleoptera: Staphylinidae). Gland morphology, chemical constituents, defensive functions, and chemotaxonomy.J. Chem. Ecol. 11:859–883.CrossRefGoogle Scholar
  11. Dettner, K., Fettköther, R., Ansteeg, O., Deml, R., Liepert, C., Petersen, B., Haslinger, E., andFrancke, W. 1992. Insecticidal fumigants from defensive glands of insects—a fumigant test with adults ofDrosophila melanogaster.J. Appl. Entomol. 113:128–137.Google Scholar
  12. Eisner, T., Goetz, M., Aneshansley, D., Fersting-Arnold, G., andMeinwald, J. 1986. Defensive alkaloid in blood of Mexican bean beetle (Epilachni varivestis).Experientia 42:204–207.CrossRefPubMedGoogle Scholar
  13. Eisner, T., Hicks, K., Eisner, M., andRobson, D.S. 1978. “Wolf-in-sheep's-clothing” strategy of a predaceous insect larva.Science 199:790–794.Google Scholar
  14. Evenhuis, H.H. 1978. Studies on Cynipidae Alloxystinae. 7. Remarks on Cameron's species and a discussion ofPhaenoglyphis species with incomplete parapsidal furrows.Entomol. Ber., Amsterdam 38:169–175.Google Scholar
  15. Flanders, S.E. 1951. The role of the ant in the biological control of homopterous insects.Can. Entomol. 83:93–98.Google Scholar
  16. Gutierrez, A.P., andvan den Bosch, R. 1970. Studies on the host selection and host specifity of the aphid hyperparasiteCharips victrix (Hymenoptera: Cynipidae). 2. The bionomics ofCharips victrix.Ann. Entomol. Soc. Am. 63:1355–1360.Google Scholar
  17. Hölldobler, B., andWilson, E.O. 1990. The Ants. Springer-Verlag, Berlin.Google Scholar
  18. Howard, R.W., Akre, R.D., andGarnett, W.B. 1990a. Chemical mimicry of an obligate predator of carpenter ants (Hymenoptera: Formicidae).Ann. Entomol. Soc. Am. 83:607–616.Google Scholar
  19. Howard, R.W., Stanley-Samuelson, D.W., andAkre, R.D. 1990b. Biosynthesis and chemical mimicry of cuticular hydrocarbons from an obligate predator,Microdon albicomatus Novak (Diptera: Syrphidae) and its ant prey,Myrmica incompleta Provancher (Hymenoptera: Formicidae).J. Kans. Entomol. Soc. 63:437–443.Google Scholar
  20. Huth, A., andDettner, K. 1990. Defense chemicals from abdominal glands of 13 rove beetle species of subtribe Staphylinina (Coleoptera: Staphylinidae, Staphylininae).J. Chem. Ecol. 16:2691–2711.CrossRefGoogle Scholar
  21. Jefson, M., Meinwald, J., Nowicki, S., Hicks, K., andEisner, T. 1983. Chemical defense of a rove beetle (Creophilus maxillosus).J. Chem. Ecol. 9:159–180.CrossRefGoogle Scholar
  22. Kamijo, K., andTakada, H. 1983. A new species ofEuneura hyperparasitic onStomaphis aphids.Akitu, Kyoto, N.S. 55:1–8.Google Scholar
  23. Liepert, C., andDettner, K. 1993. Recognition of aphid parasitoids be honeydew-collecting ants: the role of cuticular lipids in a chemical mimicry system.J. Chem. Ecol. 19:2143–2153.CrossRefGoogle Scholar
  24. Mackauer, M., andVölkl, W. 1993. Regulation of aphid populations by aphidiid wasps: Does aphidiid foraging behaviour or hyperparasitism limit impact?Oecologia 94:339–350.Google Scholar
  25. Matejko, I., andSullivan, D.J. 1979. Bionomics and behavior ofAlloxysta megourae, an aphid hyperparasitoid (Hymenoptera: Alloxystidae).J. N. Y. Entomol. Soc. 87:275–282.Google Scholar
  26. Matejko, I., andSullivan, D.J. 1984. Interspecific tertiary parasitoidism between two aphid hyperparasitoids:Dendrocerus carpenteri andAlloxysta megourae (Hymenoptera: Megaspilidae and Cynipoidea).J. Wash. Acad. Sci. 74:31–38.Google Scholar
  27. Micha, S.G., Stammel, J., andHöller, C. 1993. 6-Methyl-5-heptene-2-one, a putative sex and spacing pheromone of the aphid hyperparasitoid,Alloxysta victrix (Hymenoptera: Alloxystidae).Eur. J. Entomol. 90:439–442.Google Scholar
  28. Milbrath, L.R., Tauber, M.J., andTauber, C.A. 1993. Prey specifity in Chrysopa: an interspecific comparison of larval feeding and defensive behaviour.Ecology 74:1384–1393.Google Scholar
  29. Pasteels, J.M., Deroe, C., Tursch, B., Braekman, J.C., Daloze, D., andHootele, C.J. 1973. Distributions et activités des alcaloides défensifs des Coccinellidae.J. Insect Physiol. 19:1771–1784.CrossRefGoogle Scholar
  30. Pavan, M. 1975. Gli Iridoidi negli insetti.Pubb. Inst. Entomol. Agraria Univ. Padua 2:5–49.Google Scholar
  31. Pavan, M., andTrave, R. 1958. Etudes sur les Formicidae. IV. Sur le venin du le dolichodérideTapinoma nigerrimum Nyl.Insectes Soc. 5:299–307.Google Scholar
  32. Singh, R., andSrivastava, P.N. 1987. Factors associated with host-location byAlloxysta pleuralis (Cameron), a hyperparasitoid ofTrioxys indicus Subba Rao & Sharma (Alloxystidae: Hymenoptera/Aphidiidae: Hymenoptera).Entomon 12:325–328.Google Scholar
  33. Stanley-Samuelson, D.W., Howard, R.W., andAkre, R.D. 1990. Nutritional interactions revealed by tissue fatty acid profiles of an obligate myrmicophilous predator,Microdon albicomatus, and its prey,Myrmica incompleta (Diptera: Syrphidae) (Hymenoptera: Formicidae).Ann. Entomol Soc. Am. 83:1108–1115.Google Scholar
  34. Stary, P. 1966. Aphid parasites (Hymenoptera, Aphidiidae) and their relationship to aphid-attending ants, with respect to biological control.Insectes Soc. 13:185–202.Google Scholar
  35. Stary, P. 1970. Biology of Aphid Parasites, with Respect to Integrated Control. Ser. Entomol. 6. Dr. W. Junk, The Hague.Google Scholar
  36. Stary, P. 1987. Aphid-ant-parasitoid association on the creeping thistleCirsium arvense in agroecosystems in Czechoslovakia.Acta Entomol. Bohemoslov. 84:15–21.Google Scholar
  37. Sullivan, D.J. 1972. Comparative behaviour and competition between two aphid hyperparasites:Alloxysta victrix andAsaphes californicus (Hymenoptera: Cynipidea, Pteromalidae).Environ. Entomol. 1:234–244.Google Scholar
  38. Sullivan, D.J. 1987. Insect hyperparasitism.Annu. Rev. Entomol. 32:49–70.CrossRefGoogle Scholar
  39. Sullivan, D.J. 1988. Hyperparasites, pp. 189–203,in A.K. Minks and P. Harrewijn (eds.). Aphids. Their Biology, Natural Enemies and Control, Vol. 2B. Elsevier, Amsterdam.Google Scholar
  40. Takada, H., andHashimoto, Y. 1985. Association of the root aphid parasitoidsAclitus sappaphis andParalipsis eikoae (Hymenoptera, Aphidiidae) with the aphid-attending antsPheidole fervida andLasius niger (Hymenoptera, Formicidae).Kontyu 53:150–160.Google Scholar
  41. Tursch, B., Daloze, D., Dupont, M., Pasteels, J.M., andTricot, M.C. 1971. A defensive alkaloid in a carnivorous beetle.Experientia 27:1380–1381.Google Scholar
  42. Vander Meer, R.K., Jouvenaz, D.P., andWojcik, D.P. 1989. Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae).J. Chem. Ecol. 15:2247–2261.CrossRefGoogle Scholar
  43. Völkl, W. 1990. Fortpflanzungsstrategien von Blattlausparasitoiden (Hymenoptera, Aphidiidae): Konsequenzen ihrer Interaktionen mit Wirten und Ameisen. Ph.D. thesis. UniversitÄt Bayreuth.Google Scholar
  44. Völkl, W. 1992. Aphids or their parasitoids: Who actually benefits from ant-attendance?J. Anim. Ecol. 61:273–281.Google Scholar
  45. Völkl, W. 1994. The effect of ant-attendance on the foraging tactic of the aphid parasitoidLysiphlebus cardui.Oikos 70:149–155.Google Scholar
  46. Völkl, W., andMackauer, M. 1993. Interactions between ants and parasitoid wasps foraging forAphis fabae spp.cirsiiacanthoidis on thistles.J. Insect Behav. 6:301–312.CrossRefGoogle Scholar
  47. Walker, G.P., andCameron, P.J. 1981. The biology ofDendrocerus carpenteri (Hymenoptera: Ceraphronidae), a parasite ofAphidius species, and field observations ofDendrocerus species as hyperparasites ofAcyrthosiphon species.N.Z. J. Zool. 8:531–538.Google Scholar
  48. Way, M.J. 1954. Studies on the association of the ant,Oecophylla longinoda (Latr.) (Formicidae) with the scale insectSaissetia zanzibarensis Williams (Coccidae).Bull. Entomol. Res. 45:113–154.Google Scholar
  49. Way, M.J. 1963. Mutualism between ants and honeydew-producing homoptera.Annu. Rev. Entomol. 8:307–344.CrossRefGoogle Scholar
  50. Wheeler, J.W., Olagbemiro, T., Nash, A., andBlum, M.S. 1977. Actinidine from the defensive secretions of dolochoderine ants.J. Chem. Ecol. 3:241–244.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Wolfgang Völkl
    • 1
  • Gerhard Hübner
    • 1
  • Konrad Dettner
    • 2
  1. 1.Lehrstuhl für Tierökologie IUniversitÄt BayreuthBayreuthGermany
  2. 2.Lehrstuhl für Tierökologie IIUniversitÄt BayreuthBayreuthGermany

Personalised recommendations