Journal of Chemical Ecology

, Volume 20, Issue 11, pp 2883–2899 | Cite as

Stereochemical inversion of pyrrolizidine alkaloids byMechanitis polymnia (Lepidoptera: Nymphalidae: Ithomiinae): Specificity and evolutionary significance

  • José Roberto Trigo
  • Lauro Euclides Soares Barata
  • Keith S. BrownJr


Pyrrolizidine alkaloids (PAs), acquired by adults or larvae of Danainae and Ithomiinae butterflies and Arctiidae moths from plants, protect these lepidopterans against predators and are biosynthetic precursors of male sex pheromones. The investigation of PAs in many species of wild-caught adults of Ithomiinae showed lycopsamine (1) [(7R)-OH, (2′S)-OH, (3′S)-OH] as the main alkaloid. In incorporation experiments, PA-free (freshly emerged) adults of the ithomiineMechanitis polymnia were fed seven PAs: lycopsamine and four of its known natural stereoisomers—indicine (2) [(7R)-OH, (2′R)-OH, (3′S)-OH], intermedine (3) [(7R)-OH, (2′S)-OH, (3′R)-OH], rinderine (4) [(7S)-OH, (2′S)-OH, (3′R)-OH], and echinatine (5) [(7S)-OH, (2′S)-OH, (3′S)-OH], and two PAs without the 7-OH: supinine (6) [(2′S)-OH, (3′R)-OH] and amabiline (7) [(2′S)-OH, (3′S)-OH]. Males epimerized PAs 3, 4, and 5 mainly to lycopsamine (1). Females fed these same three PAs changed a smaller proportion to lycopsamine; their lesser capacity to modify PAs corresponds to their normal acquisition of already transformed PAs from males during mating rather than through visits of adults to plant sources of PAs. The alkaloids1 and2, both 7R and 3′S, were incorporated without or with minimum change by males and females. Feeding experiments with6 and7 (males only) showed an inversion at the 3′ center of6 and no change in7. The inversion from 7S to 7R (probably via oxyreduction) may be closely related to the evolution of acquisition of PAs by butterflies and moths. Two hypotheses are discussed: (1) The ancestral butterflies are probably adapted to tolerate, assimilate, and use (7R)-PAs (most common in plants; all widespread 1,2-unsaturated macrocyclic PA diesters show this configuration). The development of (7R)-PA receptors in the butterflies could lead to a specialization on this configuration in two ways: to help find PA plants and to utilize these components in sexual chemical communication. A later appearance of (7S)-PAs in plants could have selected an enzymatic system for the inversion of this chiral center in order to continue producing (7R)-PA-derived pheromones. (2) The inversion would be due to the evolution of a enzyme system specialized in the transport of (7R)-PAs to the integument; the failure of this system to carry (7S)-PAs led to an enzymatic system to invert them to transportable (7R)-PAs. In this case, the 7R configuration is an effect and not a cause of (7R)-PA-derived pheromones. In both hypotheses, the partial inversion of the 3′-asymmetric center, when the butterfly was fed intermedine (3), rinderine (4), and supinine (6), could be fortuitous due to the conformation of the molecule and/or the enzymatic system.

Key words

Pyrrolizidine alkaloids Lepidoptera Nymphalidae Ithomiinae Mechanitis polymnia stereochemical inversion epimerization evolution of PA acquisition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, T.W., andMeinwald, J. 1986. Pheromones of two arctiid moths (Creatonotos transiens andC. gangis): Chiral components from both sexes and achiral female components.J. Chem. Ecol. 12:385–409.CrossRefGoogle Scholar
  2. Bell, T.W., Boppré, M., Schneider, D., andMeinwald, J. 1984. Stereochemical course of pheromone biosynthesis in the arctiid moth,Creatonotos transiens.Experientia 40:713–714.CrossRefPubMedGoogle Scholar
  3. Biller, A., Boppré, M., Witte, L., andHartmann, T. 1994. Pyrrolizidine alkaloids inChromolaena odorata: Chemical and chemoecology aspects.Phytochemistry 35:615–619.CrossRefGoogle Scholar
  4. Bogner, F., andBoppré, M. 1989. Single cell recordings reveal hydroxydanaidal as the volatile compound attracting insects to pyrrolizidine alkaloids.Entomol. Exp. Appl. 50:171–184.CrossRefGoogle Scholar
  5. Boppré, M. 1978. Chemical communication, plant relationships and mimicry in the evolution of danaid butterflies.Entomol. Exp. Appl. 24:264–277.Google Scholar
  6. Boppré, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids).Naturwissenschaften 73:17–26.CrossRefGoogle Scholar
  7. Boppré, M. 1990. Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology.J. Chem. Ecol. 16:165–185.CrossRefGoogle Scholar
  8. Bremer, K., Jansen, R.K., Karis, P.O., KÄllersjö, M., Keeley, S.C., Kim, K.J., Michaels, H.J., Palmer, J.D., andWallace, R.S. 1992. A review of the phylogeny and classification of the Asteraceae.Nord. J. Bot. 12:141–148.Google Scholar
  9. Brown, K.S. 1984. Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator.Nature 307:707–709.CrossRefGoogle Scholar
  10. Brown, K.S. 1985. Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae).Rev. Bras. Biol. 44:435–460.Google Scholar
  11. Brown, K.S. 1987. Chemistry at the Solanaceae/lthomiinae interface.Ann. M. Bot. Gard. 74:359–397.Google Scholar
  12. Coimbra-Filho, A.F. 1981. Animais predados ou rejeitados pelo Saui-Piranga,Leontopithecus r. rosalia (L., 1766) na sua area de ocorrÊncia primitiva (Callitrichidae: Primates).Rev. Bras. Biol. 41:717–731.Google Scholar
  13. Conner, W.E., Eisner, T., Vander Meer, R.K., Guerrero, A., andMeinwald, J. 1981. Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): role of a pheromone derived from dietary alkaloids.Behav. Ecol. Sociobiol. 9:227–235.CrossRefGoogle Scholar
  14. Culvenor, C.C.J. 1978. Pyrrolizidine alkaloids—occurrence and systematic importance in angiosperms.Bot. Notiser 131:473–486.Google Scholar
  15. Dussourd, D.E., Ubik, K., Harvis, C., Resch, J., Meinwald, J., andEisner, T. 1988. Biparental defensive endowment of eggs with acquired plant alkaloid in the mothUtetheisa ornatrix.Proc. Natl. Acad. Sci. U.S.A. 85:5992–5996.PubMedGoogle Scholar
  16. Edgar, J.A. 1975. Danainae (Lep.) and 1,2-dehydropyrrolizidine alkaloid-containing plants-with reference to observations made in the New Hebrides.Phil. Trans. R. Soc. Lond. B. 272:467–476.Google Scholar
  17. Edgar, J.A. 1982. Pyrrolizidine alkaloids sequestered by Solomon Island danainae butterflies. The feeding preferences of the Danainae and Ithomiinae.J. Zool. Lond. 196:385–399.Google Scholar
  18. Edgar, J.A. 1984. Parsonsieae: ancestral larval foodplants of the Danainae and Ithomiinae, pp. 91–96,in P.A. Ackery, and R.I. Vane-Wright (eds.). The Biology of Butterflies. Academic Press, London.Google Scholar
  19. Edgar, J.A., Culvenor, C.C.J., andSmith, L.W. 1971. Dihydropyrrolizine derivatives in the “hair-pencil” secretions of danaid butterflies.Experientia 27:761–762.Google Scholar
  20. Edgar, J.A., Culvenor, C.C.J., andRobinson, G.S. 1973. Hairpencil dihydropyrrolizidines of Danainae the New Hebrides.J. Aust. Entomol. Soc., 12:144–150.Google Scholar
  21. Edgar, J.A., Culvenor, C.C.J., andPliske, T.E. 1974. Coevolution of danaid butterflies with their host plants.Nature 250:646–648.CrossRefPubMedGoogle Scholar
  22. Edgar, J.A., Culvenor, C.C.J., andPliske, T.E. 1976. Isolation of a lactone structurally related to the esterifying acids of pyrrolizidine alkaloids from the costal fringes of male Ithomiinae.J. Chem. Ecol. 2:263–270.CrossRefGoogle Scholar
  23. Edgar, J.A., Boppré, M., andSchneider, D. 1979. Pyrrolizidine alkaloid storage in African and Australian Danaid butterflies.Experientia 35:1447–1448.CrossRefGoogle Scholar
  24. Eisner, T. 1982. For love of nature: exploration and discovery at biological field stations.Bioscience 32:321–326.Google Scholar
  25. Eisner, T., andEisner, M. 1991. Unpalatability of the pyrrolizidine alkaloid-containing mothUtetheisa ornatrix, and its larva, to wolf spiders.Psyche 98:111–118.Google Scholar
  26. Kelley, R.B., Seiber, J.N., Jones, A.D., Segall, H.J., andBrower, L.P. 1987. Pyrrolizidine alkaloids in overwintering monarch butterflies (Danaus plexippus) from Mexico.Experientia 43:943–946.CrossRefGoogle Scholar
  27. Krasnoff, S.B., andDussourd, D.E. 1989. Dihydropyrrolizine attractants for arctiid moths that visit plants containing pyrrolizidine alkaloids.J. Chem. Ecol. 15:47–60.CrossRefGoogle Scholar
  28. L'Empereur, K.M., Li, Y., andStermitz, F.R. 1989. Pyrrolizidine alkaloids fromHackelia californica andGnophaela latipennis, anH. californica-hosted arctiid moth.J. Nat. Prod. 52:360–366.CrossRefGoogle Scholar
  29. Mackay, M.F., andCulvenor, C.C.J. 1982. Structure of Senecionine, pyrrolizidine alkaloid.Acta Cryst. B38:2574–2578.Google Scholar
  30. Mackay, M.F., Sadek, M., andCulvenor, C.C.J. 1983. Lycopsamine and intermedine, C15H25NO5: Diastereoisomeric pyrrolizidine alkaloids.Acta Cryst. C39:785–788.Google Scholar
  31. Masters, A.R. 1990. Pyrrolizidine alkaloids in artificial nectar protect adult ithomiine butterflies from spider predator.Biotropica 22:298–304.Google Scholar
  32. Masters, A.R. 1992. Chemical defense in Ithomiinae butterflies (Nymphalidae: Ithomiinae). PhD thesis. University of Florida, Gainesville, Florida.Google Scholar
  33. Mattocks, A.R. 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic Press, New York.Google Scholar
  34. Nishida, R., Kim, C., Fukami, H., andIrie, R. 1991. Ideamine N-oxides: Pyrrolizidine alkaloids sequestered by the Danaine butterfly.Idea leuconoe. Agric. Biol. Chem. 55:1787–1792.Google Scholar
  35. Pasteels, J.M., Duffey, S., andRowell-Rahier, M. 1990. Toxins in chrysomelid beetles. Possible evolutionary sequence from de novo synthesis to derivation from food-plant chemicals.J. Chem. Ecol. 16:211–222.CrossRefGoogle Scholar
  36. Pliske, T.E. 1975a. Pollination of pyrrolizidine alkaloid containing plants by male Lepidoptera.Environ. Entomol. 4:474–479.Google Scholar
  37. Pliske, T.E. 1975b. Attraction of Lepidoptera to plants containing pyrrolizidine alkaloids.Environ. Entomol. 4:455–473.Google Scholar
  38. Rizk, A.F.M. 1991. The pyrrolizidine alkaloids: Plant sources and properties, pp. 1–90, in A.F.M. Rizk (ed.). Naturally Occurring Pyrrolizidine Alkaloids. CRC Press, Boca Raton, Florida.Google Scholar
  39. Rothschild, M., andEdgar, J.A. 1978. Pyrrolizidine alkaloids fromSenecio vulgaris sequestered and stored byDanaus plexippus.J. Zool. London 186:347–349.Google Scholar
  40. Rowell-Rahier, M., Witte, L., Ehmke, A., Hartmann, T., andPasteels, J.M. 1991. Sequestration of plant pyrrolizidine alkaloids by chrysomelid beetles and selective transfer into the defensive secretions.Chemoecology 2:41–48.CrossRefGoogle Scholar
  41. Schneider, D., Boppré, M., Schneider, H., Thompson, W.R., Boriack, C.J., Petty, R.L., andMeinwald, J. 1975. A pheromone precursor and its uptake in maleDanaus butterflies.J. Comp. Physiol. 97:245–256.CrossRefGoogle Scholar
  42. Schulz, S. 1987. Die Chemie Duftorgane mÄnnlicher Lepidopteren. Doctoral thesis. Institut für Organische Chemie, UniversitÄt Hamburg, Hamburg, Germany.Google Scholar
  43. Schulz, S. 1992. Absolute configuration and synthesis of 2-hydroxy-2-(1-hydroxyethyl)-3-methyl-γ-butyrolactone, a presumed pheromone of ithomiine butterflies.Liebigs Ann. Chem. 1992:829–834.Google Scholar
  44. Schulz, S., Francke, W., Edgar, J., andSchneider, D. 1988. Volatile compounds from androconial organs of danaine and ithomiine butterflies.Z. Naturforsch 43c:99–104.Google Scholar
  45. Schulz, S., Francke, W., Boppré, M., Eisner, T., andMeinwald, J. 1993. Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors inCreatonotos transiens (Lepidoptera, Arctiidae).Proc. Natl. Acad. Sci. U.S.A. 90:6834–6838.PubMedGoogle Scholar
  46. Stelljes, M.E., andSeiber, J.N. 1990. Pyrrolizidine alkaloids in an overwintering population of monarch butterflies (Danaus plexippus) in California.J. Chem. Ecol. 16:1459–1470.CrossRefGoogle Scholar
  47. Trigo, J.R. 1993. Alcalóides pirrolizidínicos em borboletas Ithomiinae. Alguns aspectos em ecologia química. Doctoral thesis. Instituto de Química, UNICAMP, Campinas, SP, Brazil.Google Scholar
  48. Trigo, J.R., andBrown, K.S. 1990. Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae.Chemocecology 1:22–29.CrossRefGoogle Scholar
  49. Trigo, J.R., andMotta, P.C. 1990. Evolutionary implications of pyrrolizidine alkaloid assimilation by danaine and ithomiine larvae (Lepidoptera: Nymphalidae).Experientia 46:332–334.CrossRefGoogle Scholar
  50. Trigo, J.R., Witte, L., Brown, K.S., Hartmann, T., andBarata, L.E.S. 1993. Pyrrolizidine alkaloids in the arctiid mothHyalurga syma.J. Chem. Ecol. 19:669–679.CrossRefGoogle Scholar
  51. Wink, M., Schneider, D., andWitte, L. 1988. Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth,Creatonotos transiens: Stereochemical conversion of heliotrine.Z. Naturforsch 43c:737–741.Google Scholar
  52. Witte, L., Rubiolo, P., Bicchi, C., andHartmann, T. 1993. Comparative analysis of pyrrolizidine alkaloids from natural sources by gas chromatography-mass spectrometry.Phytochemisiry 32:187–196.CrossRefGoogle Scholar
  53. Wodak, S.J. 1975. The crystal structure of heliotrine: A pyrrolizidine alkaloid monoester.Acta Cryst. B 31:569–573.CrossRefGoogle Scholar
  54. Wunderer, H., Hansen, K., Bell, T.W., Schneider, D., andMeinwald, J. 1986. Sex pheromones of two Asian moths (Creatonotos transiens, C. gangis; Lepidoptera—Arctiidae): Behavior, morphology, chemistry and electrophysiology.Exp. Biol. 46:11–27.PubMedGoogle Scholar
  55. Zikan-Cardoso, M. 1991. Defesa química por alcalóides pirrolizidínicos (PAs) em Lepidoptera: testes corn um predador vertebrado. Master's thesis. Instituto de Biologia, UNICAMP, Campinas, SP, Brazil.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • José Roberto Trigo
    • 1
    • 2
  • Lauro Euclides Soares Barata
  • Keith S. BrownJr
    • 1
  1. 1.Laboratório de Ecologia Química, Departamento de Zoologia Instiluto de BiologiaUniversidade Estadual de CampinosCampinas, SÃo PauloBrazil
  2. 2.Instituto de QuímicaUniversidade Estadual de CampinasCampinas, SÃo PauloBrazil

Personalised recommendations