Airborne and surface residues of parathion and its conversion products in a treated plum orchard environment

  • J. E. Woodrow
  • J. N. Seiber
  • D. G. Crosby
  • K. W. Moilanen
  • C. J. Soderquist
  • C. Mourer


Airborne pesticide residues were collected both within and downwind from a parathion-treated plum orchard by high volume sampling through XAD-4 macroreticular resin. Levels of paraoxon in excess of 100 ng/m3 were found in orchard air, along with parathion, during the early days of two 21-day sampling studies. Paraoxon:parathion ratios in the orchard air were relatively constant, averagingca. 0.5 for days 1 to 21 following treatment. Likely sources of airborne paraoxon include vaporization and dislodgement from soil and leaf surfaces, and chemical conversion of parathion in the air. Support for the latter came from observation of an increased paraoxon:parathion ratio in air samples collected downwind from the orchard. Atmospheric conversion of parathion to paraoxon, accelerated by sunlight, was indicated by both field and laboratory studies. Overall dissipation of parathion from the orchard air, soil, and leaf tissue proceeded to a considerable extent through breakdown to paraoxon under the dry climatic conditions of these studies. Eventual conversion to the relatively stable breakdown product,p-nitrophenol, was indicated from analysis of air in the orchard vicinity.


Climatic Condition Volume Sampling Leaf Tissue Leaf Surface Pesticide Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. D., Y. Iwata, and F. A. Gunther: Worker environment research. The effect of dust derived from several soil types on the dissipation of parathion and paraoxon dislodgeable residues on citrus foliage. Bull. Environ. Contam. Toxicol.15, 547 (1976).PubMedGoogle Scholar
  2. Anonymous: Documentation of the threshold limit values for substances in workroom air. Amer. Conf. Governmental Industrial Hygienists, Cincinnati, Ohio (1971).Google Scholar
  3. Anonymous: Occupational safety requirements for pesticides. Fed. Reg.38, 20362 (1973).Google Scholar
  4. Archer, T. E.: Dissipation of parathion and related compounds from field-sprayed spinach. J. Agr. Food Chem.22, 974 (1974).Google Scholar
  5. Beyermann, K., and W. Eckrich: Trennung des insecticidgehaltes der luft in den aerosolgebundenen und den gasförmigen anteil. Z. Anal. Chem.269, 279 (1974).Google Scholar
  6. Carmen, G. E., W. E. Westlake, and F. A. Gunther: Potential residue problem associated with low volume sprays on citrus in California. Bull. Environ. Contam. Toxicol.8, 38 (1972).PubMedGoogle Scholar
  7. Cliath, M. M., and W. F. Spencer: Dissipation of pesticides from soil by volatilization of degradation products. I. Lindane and DDT. Environ. Sci. Technol.6, 910 (1972).Google Scholar
  8. Cook, J. W., and N. D. Pugh: Quantitative study of cholinesterase inhibiting decomposition products of parathion formed by ultraviolet light. J. Ass. Offic. Agr. Chem.40, 277 (1957).Google Scholar
  9. Crosby, D. G., and K. W. Moilanen: Vapor-phase photodecomposition of aldrin and dieldrin. Arch. Environ. Contam. Toxicol.2, 62 (1974).PubMedGoogle Scholar
  10. Crosby, D. G., K. W. Moilanen, and C. J. Soderquist: Laboratory simulation of parathion degradation in the atmosphere. Chemosphere, submitted for publication (1976).Google Scholar
  11. Edwards, C. A.: Factors affecting the persistence of pesticides in the soil. Chem. Ind. 190 (1974).Google Scholar
  12. Enos, H. F., J. F. Thompson, J. B. Mann, and R. F. Moseman: Determination of pesticide residues in air. 163rd National Meeting of the American Chemical Society, Boston, Mass., April (1972).Google Scholar
  13. Frawley, J. P., J. W. Cook, J. R. Blake, and O. G. Fitzhugh: Effect of light on chemical and biological properties of parathion. J. Agr. Food Chem.6, 28 (1958).Google Scholar
  14. Giang, P. A., and S. A. Hall: Enzymatic determination of organic phosphorus insecticides. Anal. Chem.23, 1830 (1951).Google Scholar
  15. Grunwell, J. R., and R. H. Erickson: Photolysis of parathion [O,O-diethylO-(4-nitrophenyl) thiophosphate]. New Products. J. Agr. Food Chem.21, 929 (1973).Google Scholar
  16. Gunther, F. A., W. E. Westlake, J. H. Barkley, W. Winterlin, and L. Langbehn: Establishing dislodgeable pesticide residue on leaf surfaces. Bull. Environ. Contam. Toxicol.9, 243 (1973).PubMedGoogle Scholar
  17. Iwata, Y., W. E. Westlake, and F. A. Gunther: Persistence of parathion in six California soils under laboratory conditions. Arch. Environ. Contam. Toxicol.1, 84 (1973).PubMedGoogle Scholar
  18. Joiner, R. L., and K. P. Baetcke: Parathion: Persistence on cotton and identification of its photoalteration products. J. Agr. Food Chem.21, 391 (1973).Google Scholar
  19. Lichtenstein, E. P., and K. R. Schultz: The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soils, with special emphasis on parathion. J. Econ. Entomol.57, 618 (1964).Google Scholar
  20. Milby, T. H., F. Ottoboni, and H. W. Mirchell: Parathion residue poisoning among orchard workers. J. Amer. Med. Ass.189, 351 (1964).Google Scholar
  21. Miles, J. W., L. E. Fetzer, and G. W. Pearce: Collection and determination of trace quantities of pesticides in air. Environ. Sci. Technol.4, 420 (1970).Google Scholar
  22. Moilanen, K. W., and D. G. Crosby: Vapor-phase photodecomposition ofp,p′-DDT and its relatives. 165th National Meeting of the American Chemical Society, Dallas, Texas, April (1973).Google Scholar
  23. Moilanen, K. W., D. G. Crosby, C. J. Soderquist, and A. S. Wong: Dynamic aspects of pesticide photodecomposition, In R. Haque and V. H. Freed (ed.): Environmental Dynamics of Pesticides, p. 45. New York: Plenum Press (1975).Google Scholar
  24. Popendorf, W. J., R. C. Spear, and S. Selvin: Collecting foliar pesticide residues related to potential exposure of workers. Environ. Sci. Technol.9, 583 (1975).Google Scholar
  25. Seiber, J. N., J. E. Woodrow, T. M. Shafik, and H. F. Enos: Determination of pesticides and their transformation products in air, In R. Haque and V. H. Freed (ed.): Environmental dynamics of pesticides. New York: Plenum Press (1975).Google Scholar
  26. Sherma, J., and T. M. Shafik: A multiclass, multiresidue analytical method for determining pesticide residues in air. Arch. Environ. Contam. Toxicol.3, 55 (1975).PubMedGoogle Scholar
  27. Soderquist, C. J., D. G. Crosby, K. W. Moilenen, J. N. Seiber, and J. E. Woodrow: The occurrence of trifluralin and its photoproducts in air. J. Agr. Food Chem.23, 304 (1975).Google Scholar
  28. Spear, R. C., D. L. Jenkins, and T. H. Milby: Pesticide residues and field workers. Environ. Sci. Technol.9, 308 (1975a).Google Scholar
  29. Spear, R. C., W. J. Popendorf, J. T. Leffingwell, and D. Jenkins: Parathion residues on citrus foliage. Decay and composition as related to worker hazard. J. Agr. Food Chem.23, 808 (1975b).Google Scholar
  30. Spencer, W. F., W. J. Farmer, and M. M. Cliath: Pesticide volatilization. Residue Reviews49, 1 (1973).Google Scholar
  31. Thomas, T. C., and J. N. Seiber: Chromosorb 102, an efficient medium for trapping pesticides from air. Bull. Environ. Contam. Toxicol.12, 17 (1974).PubMedGoogle Scholar
  32. Thompson, J. F. (ed.): Analysis of pesticide residues in human and environmental samples.U.S. Environmental Protection Agency, Perrine, Florida (1972).Google Scholar
  33. Ware, G. W., B. Estesen, and W. P. Cahill: Organophosphate residues on cotton in Arizona. Bull. Environ. Contam. Toxicol.8, 361 (1972).PubMedGoogle Scholar
  34. Ware, G. W., D. P. Morgen, B. J. Estesen, W. P. Cahill, and D. M. Whitacre: Establishment of reentry intervals for organophosphate-treated cotton fields based on human data: I. Ethyl- and methyl parathion. Arch. Environ. Contam. Toxicol.1, 48 (1973).PubMedGoogle Scholar
  35. Westlake, W. E., F. A. Gunther, and G. E. Carman: Worker environment research: Dioxathion (Delnav®) residues on and in orange fruits and leaves, in dislodgeable particulate matter, and in the soil beneath sprayed trees. Arch. Environ. Contam. Toxicol.1, 60 (1973).PubMedGoogle Scholar
  36. Winterlin, W., C. Mourer, and J. B. Bailey: Degradation of four organophosphate insecticides in grape tissue. Pest. Monit. J.8, 59 (1974).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • J. E. Woodrow
    • 1
  • J. N. Seiber
    • 1
  • D. G. Crosby
    • 1
  • K. W. Moilanen
    • 1
  • C. J. Soderquist
    • 1
  • C. Mourer
    • 1
  1. 1.Department of Environmental ToxicologyUniversity of CaliforniaDavis

Personalised recommendations