Advertisement

Communications in Mathematical Physics

, Volume 131, Issue 1, pp 51–107 | Cite as

Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics

  • Sergio Doplicher
  • John E. Roberts
Article

Abstract

Given the local observables in the vacuum sector fulfilling a few basic principles of local quantum theory, we show that the superselection structure, intrinsically determined a priori, can always be described by a unique compact global gauge group acting on a field algebra generated by field operators which commute or anticommute at spacelike separations. The field algebra and the gauge group are constructed simultaneously from the local observables. There will be sectors obeying parastatistics, an intrinsic notion derived from the observables, if and only if the gauge group is non-Abelian. Topological charges would manifest themselves in field operators associated with spacelike cones but not localizable in bounded regions of Minkowski space. No assumption on the particle spectrum or even on the covariance of the theory is made. However the notion of superselection sector is tailored to theories without massless particles. When translation or Poincaré covariance of the vacuum sector is assumed, our construction leads to a covariant field algebra describing all covariant sectors.

Keywords

Field Operator Gauge Group Minkowski Space Topological Charge Massless Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Doplicher, S., Haag, R., Roberts, J. E.: Local observables and particle statistics I. Commun. Math. Phys.23, 199–230 (1971)CrossRefGoogle Scholar
  2. 2.
    Doplicher, S., Roberts, J. E.: A new duality theory for compact groups. Inventiones Math.98, 157–218 (1989)CrossRefGoogle Scholar
  3. 3.
    Wick, G. C., Wightman, A. S., Wigner, E. P.: The intrinsic parity of elementary particles. Phys. Rev.88, 101–105 (1952)CrossRefGoogle Scholar
  4. 4.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964)CrossRefGoogle Scholar
  5. 5.
    Borchers, H. J.: Local rings and the connection of spin with statistics. Commun. Math. Phys.1, 281–307 (1965)CrossRefGoogle Scholar
  6. 6.
    Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys.84, 1–54 (1982)CrossRefGoogle Scholar
  7. 7.
    Fredenhagen, K., Marcu, M.: Charged states inZ 2 gauge theories. Commun. Math. Phys.92, 81–119 (1983)CrossRefGoogle Scholar
  8. 8.
    Buchholz, D.: The physical state space of quantum electrodynamics. Commun. Math. Phys.85, 49–71 (1982)CrossRefGoogle Scholar
  9. 9.
    Doplicher, S., Haag, R., Roberts, J. E.: Local observables and particle statistics II. Commun. Math. Phys.35, 49–85 (1974)CrossRefGoogle Scholar
  10. 10.
    Doplicher, S., Haag, R., Roberts, J. E.: Fields, observables and gauge transformations I. Commun. Math. Phys.13, 1–23 (1969)CrossRefGoogle Scholar
  11. 11.
    Doplicher, S., Roberts, J. E.: Fields, statistics and non-Abelian gauge groups. Commun. Math. Phys.28, 331–348 (1972)CrossRefGoogle Scholar
  12. 12.
    Doplicher, S., Haag, R., Roberts, J. E.: Field, observables and gauge transformations II. Commun. Math. Phys.15, 173–200 (1969)CrossRefGoogle Scholar
  13. 13.
    Fröhlich, J.: New super-selection sectors (“soliton-states”) in two dimensional Bose quantum field models. Commun. Math. Phys.47, 269–310 (1976)CrossRefGoogle Scholar
  14. 14.
    Doplicher, S., Roberts, J. E.: Endomorphisms ofC *-algebras, cross products and duality for compact groups. Ann. Math.130, 75–119 (1989)Google Scholar
  15. 15.
    Cuntz, J.: SimpleC *-algebras generated by isometries. Commun. Math. Phys.57, 173–185 (1977)CrossRefGoogle Scholar
  16. 16.
    Bisognano, J. J., Wichmann, E. H.: On the duality condition for quantum fields. J. Math. Phys.17, 303–321 (1976)CrossRefGoogle Scholar
  17. 17.
    Doplicher, S., Roberts, J. E.: Duals of compact Lie groups realized in the Cuntz algebras and their actions onC *-algebras. J. Funct. Anal.74, 96–120 (1987)CrossRefGoogle Scholar
  18. 18.
    Borchers, H. J.: A remark on a theorem of B. Misra. Commun. Math. Phys.4, 315–323 (1967)CrossRefGoogle Scholar
  19. 19.
    Fredenhagen, K.: On the existence of antiparticles. Commun. Math. Phys.79, 141–151 (1981)CrossRefGoogle Scholar
  20. 20.
    Drühl, K., Haag, R., Roberts, J. E.: On Parastatistics. Commun. Math. Phys.18, 204–226 (1970)CrossRefGoogle Scholar
  21. 21.
    Roberts, J. E.: Statistics and the intertwiner calculus. In:C *-Algebras and their applications to statistical mechanics and quantum field theory. Kastler, D. (ed.) pp. 203–225. Amsterdam, New York, Oxford: North Holland 1976Google Scholar
  22. 22.
    Roberts, J. E.: Cross products of von Neumann algebras by group duals. Symposia Mathematica20, 335–363 (1976)Google Scholar
  23. 23.
    Doplicher, S., Roberts, J. E.: Compact group actions onC *-algebras. J. Operator Theory19, 283–305 (1988)Google Scholar
  24. 24.
    Tannaka, T.: Über den Dualitätssatz der nichtkommutativen topologischen Gruppen. Tôhoku Math. J.45, 1–12 (1939)Google Scholar
  25. 25.
    Roberts, J. E.: Localization in algebraic field theory. Commun. Math. Phys.85, 87–98 (1982)CrossRefGoogle Scholar
  26. 26.
    Doplicher, S.: Local aspects of superselection rules. Commun. Math. Phys.85, 73–86 (1982); Doplicher, S., Longo, R.: Local aspects of superselection rules II. Commun. Math. Phys.88, 399–409 (1983); Buchholz, D., Doplicher, S., Longo, R.: On Noether's theorem in quantum field theory. Ann. Phys.170, 1–17 (1986)CrossRefGoogle Scholar
  27. 27.
    Pedersen, G. K.:C *-algebras and their automorphism groups. London, New York, San Francisco: Academic Press 1979Google Scholar
  28. 28.
    Borchers, H. J., Buchholz, D.: The energy-momentum spectrum in local field theories with broken Lorentz-symmetry. Commun. Math. Phys.97, 169–185 (1985)CrossRefGoogle Scholar
  29. 29.
    Buchholz, D., Epstein, H.: Spin and statistics of quantum topological charges. Fizika17, 329–343 (1985)Google Scholar
  30. 30.
    Roberts, J. E.: Spontaneously broken gauge symmetries and superselection rules. Proceedings of the International School of Mathematical Physics, Camerino 1974. Gavallotti, G. (ed.). Università di Camerino 1976Google Scholar
  31. 31.
    Roberts, J. E.: Net cohomology and its applications to field theory. In: Quantum Fields—Algebras, Processes. Streit, L. (ed.). Wien, New York: Springer 1980Google Scholar
  32. 32.
    Buchholz, D., Doplicher, S., Longo, R., Roberts, J. E.: Broken symmetries and degeneracy of the vacuum in quantum field theory, (in preparation)Google Scholar
  33. 33.
    Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras I. Commun. Math. Phys.125, 201–226 (1989)CrossRefGoogle Scholar
  34. 34.
    Fröhlich, J.: Statistics of fields, the Yang-Baxter equation, and the theory of knots and links. In: Non-Perturbative Quantum Field Theory. 't Hooft, G. et al. (eds.). New York: Plenum Press 1988; Fröhlich, J., Marchetti, P. A.: Quantum field theory of vortices and anyons. Commun. Math. Phys.121, 177–224 (1989)Google Scholar
  35. 35.
    Joyal, A., Street, R.: Braided monoidal categories. Macquarie Mathematics Studies, 1986Google Scholar
  36. 36.
    Deligne, P.: Categories Tannakiennes. Grothendieck Festschrift (to appear)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Sergio Doplicher
    • 1
  • John E. Roberts
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations