Advertisement

Communications in Mathematical Physics

, Volume 155, Issue 2, pp 295–310 | Cite as

Accuracy of mean field approximations for atoms and molecules

  • Volker Bach
Article

Abstract

We estimate the accuracy of the mean field approximation induced by the Thomas-Fermi potential for the ground state energy of atoms and molecules. Taking the Dirac exchange correction into account, we show the error to be of the formO(Z 5/3−δ )+D for any δ<2/231 as the total nuclear chargeZ becomes large.D is an electrostatic energy of the difference density that measures the deviation of the mean field groud state from self-consistency.

Keywords

Neural Network Statistical Physic Complex System State Energy Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach, V.: Error bound for the Hartree-Fock energy of atoms and molecules. Commun. Math. Phys.147, 527–549 (1992)Google Scholar
  2. 2.
    Dirac, P.A.M.: Note on exchange phenomena in the Thomas-Fermi atom. Proc. Cambridge Philos. Soc.26, 376–385 (1931)Google Scholar
  3. 3.
    Fefferman, C.L., de la Llave, R.: Relativistic stability of matter-I. Revista Matematica Iberoamericana2(1, 2) 119–161 (1986)Google Scholar
  4. 4.
    Fefferman, C.L., Seco, L.A.: An upper bound for the number of electrons in a large ion. Proc. Nat. Acad. Sci. USA86, 3464–3465 (1989)Google Scholar
  5. 5.
    Fefferman, C.L., Seco, L.A.: The ground-state energy of a large atom. Bull A.M.S., 1990Google Scholar
  6. 6.
    Fefferman, C.L., Seco, L.A.: The density in a one-dimensional potential. Adv. Math., to appearGoogle Scholar
  7. 7.
    Helffer, B., Knauf, A., Siedentop, H., Weikard, R.: On the absence of a first order correction for the number of bound states of a Schrödinger operator with Coulomb singularity. Commun. PDE17, 615–639 (1992)Google Scholar
  8. 8.
    Hunziker, W.: Coherent states. Lecture Notes (unpublished) 1989Google Scholar
  9. 9.
    Ivrii, V.Ja., Sigal, I.M.: Asymptotics of the ground state energies of large Coulomb systems. Annals Math., to appearGoogle Scholar
  10. 10.
    Lieb, E.H.: The stability of matter. Rev. Mod. Phys.48, 653–669 (1976)Google Scholar
  11. 11.
    Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–604 (1981)Google Scholar
  12. 12.
    Lieb, E.H.: Variational principle for many-fermion systems. Phys. Rev. Lett.46(7), 457–459 (1981)Google Scholar
  13. 13.
    Lieb, E.H., Oxford, S.: An improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem.19, 427–439 (1981)Google Scholar
  14. 14.
    Schwinger, J.: Thomas-Fermi model: The second correction. Phys. Rev. A24(5) 2353–2361 (1981)Google Scholar
  15. 15.
    Seco, L.A., Sigal, I.M., Solovej, J.-P.: Bound on the ionization energy of large atoms. Commun. Math. Phys.131, 307–315 (1990)Google Scholar
  16. 16.
    Thirring, W.: Lehrbuch der Mathematischen Physik 4: Quantenmechanik großer Systeme. Berlin, Heidelberg, New York: Springer, 1st ed. 1980Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Volker Bach
    • 1
  1. 1.Fachbereich Mathematik MA 7-2Technische Universität BerlinBerlinGermany

Personalised recommendations