Communications in Mathematical Physics

, Volume 155, Issue 2, pp 277–294

On the blow-up of solutions of the 3-D Euler equations in a bounded domain

  • Andrew B. Ferrari
Article

Abstract

It is shown that if [0,\(\hat T\)) is the maximal interval of existence of a smooth solutionu of the incompressible Euler equations in a bounded, simply connected domain Ω\( \subseteq\)R3, then\(\int_0^{\hat T} {\left| {\omega ( \cdot ,t)} \right|_{L^\infty (\Omega )} } dt = \infty\), where ω=∇×u is the vorticity. Crucial to this result is a special estimate proven in Ω of the maximum velocity gradient in terms of the maximum vorticity and a logarithmic term involving a higher norm of the vorticity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.: Sobolev Spaces. New York: Academic Press 1975Google Scholar
  2. 2.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math.17, 623–727 (1959)Google Scholar
  3. 3.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates over the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math.17, 35–92 (1964)Google Scholar
  4. 4.
    Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of Smooth Solutions for the 3-D Euler Equations. Commun. Math. Phys.94, 61–66 (1984)Google Scholar
  5. 5.
    Ferrari, A.: On the Blow-up of Solutions of the 3-D Euler Equations in a Bounded Domain. Ph.D. thesis, Duke University, 1992Google Scholar
  6. 6.
    Kato, T., Lai, C.Y.: Nonlinear Evolution Equations and the Euler Flow. J. Funct. Anal.56, 15–28 (1984)Google Scholar
  7. 7.
    Kato, T., Ponce, G.: Well-posedness of the Euler and Navier-Stokes equations in the Lebesgue SpacesL sp(R 2). Revista Matematicas Iberoamericana2, 73–88 (1986)Google Scholar
  8. 8.
    Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math.34, 481–524 (1981)Google Scholar
  9. 9.
    Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. In: Applied Math. Sciences Series, Vol.53, Berlin, Heidelberg, New York: Springer 1983Google Scholar
  10. 10.
    Majda, A.: Vorticity and the Mathematical Theory of Incompressible Fluid Flow. Lecture Notes, Princeton University, 1986–1987Google Scholar
  11. 11.
    Solonnikov, V.A.: On Green's Matrices for Elliptic Boundary Value Problems I. Trudy Mat. Inst. Steklov110, 123–170 (1970)Google Scholar
  12. 12.
    Solonnikov, V.A.: On Green's Matrices for Elliptic Boundary Value Problems II. Trudy Mat. Inst. Steklov116, 187–226 (1971)Google Scholar
  13. 13.
    Taylor, M.: Pseudodifferential Operators and Nonlinear PDE. Boston, MA: Birkhäuser 1991Google Scholar
  14. 14.
    Temam, R.: On the Euler Equations of Incompressible Perfect Fluids. J. Funct. Anal.20, 32–43 (1975)Google Scholar
  15. 15.
    Wahl, W. von: Vorlesung über das Außenraumproblem für die instationären Gleichungen von Navier-Stokes. Rudolph-Lipschitz-Vorlesung, Sonderforschungsbereich 256. Nichtlineare Partielle Differentialgleichungen, Bonn, 1989Google Scholar
  16. 16.
    Wahl, W. von: Estimating ∇u by ∇·u and ∇×u. To appear in Math. Methods in the Appl. SciencesGoogle Scholar
  17. 17.
    Yanagisawa, T.: A Continuation Principle for the Euler Equations for Incompressible Fluids in a Bounded Domain. PreprintGoogle Scholar
  18. 18.
    Zajaczkowski, M.: Remarks on the Breakdown of Smooth Solutions for the 3-D Euler Equations in a Bounded Domain. Bull. Polish Acad. of Sciences Mathematics37, 169–181 (1989)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Andrew B. Ferrari
    • 1
  1. 1.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations