Communications in Mathematical Physics

, Volume 129, Issue 3, pp 631–641

Harmonic analysis of local operators

  • Detlev Buchholz


The spatial Fourier transforms of local operators are analysed. It is shown that the Fourier components for non-zero momentum form weakly square integrable functions in all states of finite energy. Moreover, there hold uniform bounds for the respectiveL2-norms. The relevance of this result is illustrated in collision theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haag, R., Schroer, B.: Postulates of quantum field theory. J. Math. Phys.3, 248–256 (1962)CrossRefGoogle Scholar
  2. 2.
    Arveson, B.: The harmonic analysis of automorphism groups. In: Operator algebras and applications. I. Proceedings of Symposia in Pure Mathematics, Vol. 38. Providence: Am. Math. Soc. 1982Google Scholar
  3. 3.
    Buchholz, D., Wanzenberg, R.: In preparationGoogle Scholar
  4. 4.
    Araki, H.: Einführung in die axiomatische Quantenfeldtheorie. II. Lecture notes. ETH Zürich 1962.Google Scholar
  5. 5.
    Araki, H., Haag, R.: Collision cross sections in terms of local observables. Commun. Math. Phys.4, 77–91 (1967)CrossRefGoogle Scholar
  6. 6.
    Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self adjoitness. New York, San Francisco, London: Academic Press 1975Google Scholar
  7. 7.
    Lehmann, H., Symanzik, K., Zimmermann, W.: Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento1, 205–225 (1955)Google Scholar
  8. 8.
    Buchholz, D.: Collision theory for massless Bosons. Commun. Math. Phys.52, 147–173 (1977)CrossRefGoogle Scholar
  9. 9.
    Buchholz, D.: On particles, infraparticles, and the problem of asymptotic completeness. In: VIIIth International Congress on Mathematical Physics, Marseille 1986. Singapore: World Scientific 1987Google Scholar
  10. 10.
    Buchholz, D., Stein, U.: In preparationGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Detlev Buchholz
    • 1
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburg 50Federal Republic of Germany

Personalised recommendations