Vegetatio

, Volume 35, Issue 3, pp 165–175 | Cite as

Use of ordination and other multivariate descriptive methods to study succession

  • M. P. Austin
Article

Summary

Multivariate techniques can be applied to both the static approach to succession (determining trends from data collected at one time) and the dynamic approach (observing actual change following perturbation). Such applications, which are few in number, are reviewed; and two studies are described in more detail: a numerical analysis of Australian rain-forest succession by Williams et al. (1969b), and a study of lawn succession as influenced by shading and trampling effects, by the author. Complex data embodying threefold relationships (sites × times × species) are shown to be amenable to multivariate analyses, and to representation of successional change by trajectories in an ordination field. Multivariate approaches have advantage over classificatory approaches for the description and understanding of interactions between spatial pattern, and change through time. Problems of experimental design and modelling for such studies are discussed.

Keywords

Lawn Multivariate methods Ordination Rainforest Succession 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T. F. H. & J. F. Koonce. 1973. Multivariate approaches to algal stratagems and tactics in systems analysis of phytoplankton. Ecology. 54(6): 1234–1246.Google Scholar
  2. Austin, M. P. 1968. Pattern in a Zerna erecta dominated community. J. Ecol. 56: 197–218.Google Scholar
  3. Austin, M. P. 1971. Role of regression analysis in plant ecology. Proc. Ecol. Soc. Aust. 6: 63–75.Google Scholar
  4. Austin, M. P. 1972. Models and analysis of descriptive vegetation data. In: Mathematical Models in Ecology (ed. J. Jeffers). Brit. Ecol. Soc. Symp. 12: 61–86. Blackwell, London.Google Scholar
  5. Austin, M. P. 1976a. On non-linear species response models in ordination. Vegetatio 33: 33–41.CrossRefGoogle Scholar
  6. Austin, M. P. 1976b. Performance of four ordination techniques assuming three different non-linear species response models. Vegetatio 33: 43–49.CrossRefGoogle Scholar
  7. Austin, M. P. & I. Noy-Meir. 1971. The problem of non-linearity in ordination: experiments with two-gradient models. J. Ecol. 59: 763–773.Google Scholar
  8. Birks, H. J. B. 1974. Numerical zonations of Flandarian pollen data. New Phytol. 73: 351–358.Google Scholar
  9. Bray, J. R. & J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.Google Scholar
  10. Clifford, H. T. & W. Stephenson. 1975. An Introduction to Numerical Classification. Academic Press, New York, 229 pp.Google Scholar
  11. Connell, J. H. & R. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organisation. Amer. Nat. 111 (in press).Google Scholar
  12. Curtis, J. T. & R. P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32: 476–496.Google Scholar
  13. Dale, M. B. 1975. On objectives of methods of ordination. Vegetatio 30: 15–32.Google Scholar
  14. Dale, M. B., P. MacNaughton-Smith, W. T. Williams & G. N. Lance. 1970. Numerical classification of sequences. Aust. Comput. J. 2: 9–13.Google Scholar
  15. Dale, M. B. & D. A. Walker. 1970. Information analysis of pollen diagrams I. Pollen Spores 12: 21–37.Google Scholar
  16. Goff, P. G. 1968. Use of size statification and differential weighting to measure forest trends. Amer. Midl. Nat. 79: 402–418.Google Scholar
  17. Goff, P. G. & P. H. Zedler. 1968. Structural gradient analysis of upland forest in the Western Great Lakes Area. Ecol. Monogr. 38: 65–86.Google Scholar
  18. Goff, P. G. & P. H. Zedler. 1972. Derivation of species succession vectors. Amer. Midl. Nat. 87: 397–412.Google Scholar
  19. Gordon, A. D. 1974. Numerical methods in Quaternary paleoecology III. Sequential sampling strategies. New Phytol. 73: 781.Google Scholar
  20. Gordon, A. D. & H. J. B. Birks. 1972. Numerical methods in Quaternary palaeoecology I. Zonation of pollen diagram. New Phytol. 71: 961–79.Google Scholar
  21. Gordon, A. D. & H. J. B. Birks. 1974. Numerical methods in Quaternary paleoecology II. Comparison of pollen diagrams. New Phytol. 73: 221–249.Google Scholar
  22. Greig-Smith, P. 1964. Quantitative Plant Ecology (2nd ed.). Butterworths, London. 256 pp.Google Scholar
  23. Greig-Smith, P. 1969. Analysis of vegetation data: the user viewpoint. In: Statistical Ecology III. Many species populations, ecosystems and system analysis. (eds. G. P. Patil, E. C. Pielou & W. E. Waters), pp. 149–162. Penn. State Univ. Press, London.Google Scholar
  24. Habeck, J. R. 1968. Forest succession in the Glacier Park cedar-hemlock forests. Ecology 49: 872–880.Google Scholar
  25. Hopkins, D. 1968. Vegetation of the Olokemeji Forest Reserve. Nigeria. J. Ecol. 56: 97–115.Google Scholar
  26. Horn, H. S. 1975. Markovian properties of forest succession. In: Ecology and Evolution of Communities, (eds. M. L. Cody & J. M. Diamond), pp. 196–211. Harvard University Press, Cambridge, Mass.Google Scholar
  27. Itow, S. 1963. Grassland vegetation in uplands of Western Honshu, Japan. II. Succession and grazing indicators. Jap. J. Bot. 18(2): 133–167.Google Scholar
  28. Knapp, R. (ed.). 1974. Handbook of Vegetation Science. Chapter 8. Vegetation Dynamics. Junk, The Hague. 364 pp.Google Scholar
  29. Maarel, E. van der. 1969. On the use of ordination models in phytosociology. Vegetatio 19: 21–46.Google Scholar
  30. McIntosh, R. P. 1967. The continuum concept of vegetation. Bot. Rev. 33: 130–187.Google Scholar
  31. Major, J. 1974. Differences in duration of successional seres. In: Vegetation Dynamics (R. Knapp, ed.). Handb. Veget. Sci. 8: 133–139. Junk, The Hague.Google Scholar
  32. Norris, J. M. & M. B. Dale. 1971. Transition matrix approach to numerical classification of soil profiles. Proc. Soil Sci. Soc. Am. 35: 487.Google Scholar
  33. Noy-Meir, I. 1974. Catenation: quantitative methods for the definition of coenoclines. Vegetatio 29: 89–99.Google Scholar
  34. Noy-Meir, I. & D. J. Anderson. 1971. Multiple pattern analysis or multiscale ordination: pathway to a vegetation hologram. In: Statistical Ecology III. Many Species Populations, Ecosystems and Systems Analysis (eds. G. P. Patil, E. C. Pielou & W. E. Waters), pp. 207–232. Pennsylvania State Univ. Press. London.Google Scholar
  35. Noy-Meir, I. & R. H. Whittaker, 1977a. Continuous multivariate methods in community analysis: some problems and developments. Vegetatio 33: 79–98.CrossRefGoogle Scholar
  36. Noy-Meir, I. & R. H. Whittaker. 1977b. Recent development in continuous multivariate techniques. In: Ordination of Plant Communities (ed. R. H. Whittaker). Junk, The Hague (in press).Google Scholar
  37. Orlóci, L. 1966. Geometric models in ecology. I. The theory and application of some ordination methods. J. Ecol. 54: 193–215.Google Scholar
  38. Orlóci, L. 1967. An agglomerative method for classification of plant communities. J. Ecol. 55: 193–206.Google Scholar
  39. Orlóci, L. 1975. Multivariate Analysis in Vegetation Research. Junk, The Hague. 276 pp.Google Scholar
  40. Pennington, W. & M. J. Sackin. 1975. An application of principal components analysis to the zonation of two Late Devonian profiles. New Phytol. 75: 419–453.Google Scholar
  41. Rabotnov, T. A. 1974. Differences between fluctuations and successions. In: Vegetation Dynamics (ed. R. Knapp). Handb. Veget. Sci. 8: 19–24. Junk, The Hague.Google Scholar
  42. Rochow, J. J. 1972. A vegetational description of a Mid-Missouri forest using gradient analysis techniques. Amer. Midl. Nat. 88: 377–396.Google Scholar
  43. Shugart, H., D. Crow & J. Hett. 1973. Forest succession models, rationale and methodology for modelling forest succession over large regions. Forest Sci. 19: 203–212.Google Scholar
  44. Spenceley, A. P. 1973. The effect of the stratification of vegetation on the analysis of successional data. J. Ecol. 61: 767–774.Google Scholar
  45. Walker, D. A. 1971. Quantification in historical plant ecology. Proc. Ecol. Soc. Aust. 6: 91–104.Google Scholar
  46. Watt, A. S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.Google Scholar
  47. Webb, L. J., J. C. Tracey & W. T. Williams. 1972. Regeneration and pattern in sub-tropical rain forest. J. Ecol. 60: 675–696.Google Scholar
  48. Webb, L. J., J. C. Tracey, W. T. Williams & Lance. 1971. Prediction of agricultural potential from intact forest vegetation. J. Appl. Ecol. 3: 99–121.Google Scholar
  49. Whittaker, R. H. 1967. Gradient analysis of vegetation. Biol. Rev. 49: 201–264.Google Scholar
  50. Whittaker, R. H. (ed.). 1973. Handbook of Vegetation Science, Part V. Ordination and Classification of Communities. Junk, The Hague. 737 pp.Google Scholar
  51. Whittaker, R. H. 1975. Communities and Ecosystems. (2nd ed.). Macmillan, New York. 385 pp.Google Scholar
  52. Whittaker, R. H. & H. G. Gauch. 1973. Evaluation of ordination techniques. In: Ordination and Classification of Communities (ed. R. H. Whittaker). Handb. Veget. Sci. 5: 289–321. Junk, The Hague.Google Scholar
  53. Williams, W. T. (ed.). 1976. Pattern Analysis in Agricultural Science. CSIRO, Melbourne. 331 pp.Google Scholar
  54. Williams, W. T., M. B. Dale & G. N. Lance. 1971. Two outstanding ordination problems. Aust. J. Bot. 19: 251–258.Google Scholar
  55. Williams, W. T. & J. M. Lambert. 1960. Multivariate methods in plant ecology. II. The use of an electronic digital computer for association analysis. J. Ecol. 48: 689–710.Google Scholar
  56. Williams, W. T. & G. N. Lance. 1968a. Choice of strategy in the analysis of complex data. Statistician 18: 31–44.Google Scholar
  57. Williams, W. T. & G. N. Lance. 1968b. Application of computer classification techniques to problems in land survey. Bull. Inst. Int. Statist. 42: 345–355.Google Scholar
  58. Williams, W. T., G. N. Lance, L. J. Webb & J. G. Tracey. 1973. Studies in the numerical analysis of complex rain-forest communities. VI. Models for the classification of quantitative data. J. Ecol.: 61: 47–70.Google Scholar
  59. Williams, W. T., G. N. Lance, L. J. Webb, J. G. Tracey & J. H. Connell. 1969a. Studies in the numerical analysis of complex rainforest communities. IV. A method for the elucidation of smallscale forest pattern. J. Ecol. 57: 635–654.Google Scholar
  60. Williams, W. T. G. N. Lance, L. J. Webb, J. G. Tracey & M. B. Dale. 1969b. Studies in the numerical analysis of complex rainforest communities. III. The analysis of successional data. J. Ecol. 57: 515–536.Google Scholar
  61. Williams, W. T. & W. Stephenson. 1973. The analysis of three-dimensional data (sites × species × times) in marine ecology. J. Exp. Mar. Biol. Ecol. 11: 207–227.CrossRefGoogle Scholar
  62. Zedler, P. H. & F. G. Goff. 1973. Size-association analysis of forest successional trends in Wisconsin. Ecol. Monogr. 43: 79–94.Google Scholar

Copyright information

© Dr. W. Junk b.v. - Publishers 1977

Authors and Affiliations

  • M. P. Austin
    • 1
  1. 1.Division of Land Use ResearchCSIROCanberra CityAustralia

Personalised recommendations