Communications in Mathematical Physics

, Volume 146, Issue 3, pp 611–635 | Cite as

Quantum continual measurements and a posteriori collapse on CCR

  • V. P. Belavkin
Article

Abstract

A quantum stochastic model for the Markovian dynamics of an open system under the nondemolition unsharp observation which is continuous in time, is given. A stochastic equation for the posterior evolution of a quantum continuously observed system is derived and the spontaneous collapse (stochastically continuous reduction of the wave packet) is described. The quantum Langevin evolution equation is solved for the case of a quasi-free Hamiltonian in the initial CCR algebra with a linear output channel, and the posterior dynamics corresponding to an initial Gaussian state is found. It is shown for an example of the posterior dynamics of a quantum oscillator that any mixed state under a complete nondemolition measurement collapses exponentially to a pure Gaussian one.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hudson, R. L., Parthasarathy, K. R.: Quantum Ito's formula and stochastic evolution. Commun. Math. Phys.93, 301–323 (1984)Google Scholar
  2. 2.
    Belavkin, V. P.: Optimal measurements and control in quantum dynamical systems. Technical Report 411, Institute of Physics, Copernicus University, Toruń, February 1979Google Scholar
  3. 3.
    Belavkin, V. P.: Quantum filtering of Markovian signals with quantum white noises. Radiotechnika i Electronica25, 1445 (1980)Google Scholar
  4. 4.
    Barchielle, A., Lupieri, G.: Quantum stochastic calculus, operation valued stochastic processes and continual measurement in quantum mechanics. J. Math. Phys.26 2222–2230 (1985)Google Scholar
  5. 5.
    Belavkin, V. P.: Nondemolition measurements, nonlinear filtering and dynamic grogramming of quantum stochastic processes. In: Blaquiere, A. (ed.), Modelling and control of systems, pp. 245–265. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  6. 6.
    Belavkin, V. P.: A new wave equation for a continuous nondemolition measurement. Phys. Lett. A140, 355, 359 (1989)Google Scholar
  7. 7.
    Belavkin, V. P.: A posterior Schrödinger equation for continuous nondemolition measurement. J. Math. Phys.31, 2930–2934 (1990)Google Scholar
  8. 8.
    Belavkin, V. P., Staszewski, P.: Nondemolition observation of a free quantum particle. Phys. Rev. A45, 1347–1356 (1992)Google Scholar
  9. 9.
    Gisin, N.: Quantum measurements and stochastic processes. Phys. Rev. Lett.52, 1657–1660 (1984)Google Scholar
  10. 10.
    Ghirardi, G. C., Rimini, A., Weber, T.: Phys. Rev.34D, 470 (1986)Google Scholar
  11. 11.
    Diósi, L.: Continuous quantum measurement and Itó formalism. Phys. Lett. A129, 419–423 (1988)Google Scholar
  12. 12.
    Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous localization. Phys. Rev. A39, 2277–2289 (1989)Google Scholar
  13. 13.
    Ghirardi, G. C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A42 78–89 (1990)Google Scholar
  14. 14.
    Barchielle, A., Belavkin, V. P.: Measurements continuous in time and posteriori state in quantum mechanics. J. Phys. A. Math. Gen.24, 1495–1514 (1991)Google Scholar
  15. 15.
    Busch, P., Lahti, P. J.: Some remarks on unsharp quantum measurements, quantum nondemolition, and all that. Annal. Phys.7, (5), 369–382 (1990)Google Scholar
  16. 16.
    Busch, P.: Macroscopic quantum systems and the objectification problem. In: Lahti, P., Mittelstaedt, P., (ed.). Symposium on the Foundations of Modern Physics. Singapore: World Scientific 1990Google Scholar
  17. 17.
    Belavkin, V. P.: A quantum nonadapted Ito formula and stochastic analysis in Fock scale. J. Funct. Anal.102 (2), 414–447 (1991)Google Scholar
  18. 18.
    Evans, M., Hudson, R. L.: Multidimensional quantum diffusions. In: Proc. of Third Quantum Probability Conference, Oberwolfach, 1987. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  19. 19.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys.48, 119–130 (1976)Google Scholar
  20. 20.
    Davies, E. B.: Quantum theory of open systems. London: Academic Press 1976Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • V. P. Belavkin
    • 1
  1. 1.Department of MathematicsUniversity of NottinghamNottinghamEngland

Personalised recommendations