Advertisement

Communications in Mathematical Physics

, Volume 154, Issue 2, pp 265–305 | Cite as

The Krichever map, vector bundles over algebraic curves, and Heisenberg algebras

  • M. R. Adams
  • M. J. Bergvelt
Article

Abstract

We study the GrassmannianGr x n consisting of equivalence classes of rankn algebraic vector bundles over a Riemann surfaceX with an holomorphic trivialization at a fixed pointp. Commutative subalgebras ofgl(n, Hλ),H λ being the ring of functions holomorphic on a punctured disc aboutp, define flows on the Grassmannian, giving rise to classes of solutions to multi-component KP hierarchies. These commutative subalgebras correspond to Heisenberg algebras in the Kac-Moody algebra associated togl(n, Hλ). One can obtain, by the Krichever map, points ofGr x n (and solutions of mcKP) from coveringsf: Y→X and other geometric data. Conversely for every point ofGr x n and for every choice of Heisenberg algebra we construct, using the cotangent bundle ofGr x n , an algebraic curve coveringX and other data, thus inverting the Krichever map. We show the explicit relation between the choice of Heisenberg algebra and the geometry of the covering space.

Keywords

Neural Network Equivalence Class Vector Bundle Quantum Computing Algebraic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB] Adams, M.R., Bergvelt, M.J.: Heisenberg algebras, Grassmannians and isospectral curves, The Geometry of Hamiltonian Systems. MSRI Publication 22, Ratiu, T. (ed.) Berlin, Heidelberg, New York: Springer 1991, pp. 1–8Google Scholar
  2. [AHH] Adams, M.R., Harnad, J., Hurtubise, J.: Coadjoint orbits, spectral curves and Darboux coordinates. The Geometry of Hamiltonian Systems, MSRI Publication 22, Ratiu, T. (ed.) Berlin, Heidelberg, New York: Springer 1991, pp. 9–22Google Scholar
  3. [Ad] Adler, M.: On a Trace Functional for Formal Pseudo-Differential Operators and the Symplectic Structure of the Korteweg-de Vries Equation. Invent. Math.50, 219–248 (1979)Google Scholar
  4. [ADKP] Arbarello, E., De Concini, C., Kac, V., Procesi, C.: Moduli spaces of curves and representation theory. Commun. Math. Phys.117, 1–36 (1988)Google Scholar
  5. [AtB] Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A308, 523–615 (1982)Google Scholar
  6. [B] Beauville, A.: Jacobiennes des courbes spectrales et systemes Hamiltoniens completement integrables. Preprint (1989)Google Scholar
  7. [BNR] Beauville, A., Narasimhan, M.S., Ramanan, S.: Spectral curves and the generalized theta divisor. J. fur die reine und angewandte. Math.398, 169–179 (1989)Google Scholar
  8. [BtK] Bergvelt, M.J., ten Kroode, A.P.E.: Partitions, vertex operator constructions and multicomponent KP equations. Preprint (1991)Google Scholar
  9. [Bo] Bourbaki, N.: Commutative algebra. Berlin, Heidelberg, New York: Springer 1989Google Scholar
  10. [Br] Brylinski, J.L.: Loop groups and non-commutative theta functions. Preprint (1989)Google Scholar
  11. [CEH] Carey, A.L., Eastwood, M.G., Hannabus, K.C.: Riemann surfaces, Clifford algebras and infinite dimensional groups. Commun. Math. Phys.130, 217–236 (1990)Google Scholar
  12. [Che] Cherednik, I.V.: Definitions of functions for affine Lie algebras. Funct. Anal. Appl.17, 243 (1983); On the group-theoretical interpretation of Baker functions and τ-functions. Russ. Math. Surveys38-6, 113–114Google Scholar
  13. [DaJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. Proceedings of RIMS symposium, Jimbo, M., Miwa, T. (eds.) Singapore: World Scientific 1983, pp. 39–120Google Scholar
  14. [DaJM] Date, E., Jimbo, M., Miwa, T.: Landau-Lifshitz equation. J. Phys. Soc. A1983, 388–393 (1983)Google Scholar
  15. [Di] Dickey, L.A.: Another example of a τ-function. Proceedings of the Workshop on Hamiltonian systems. Montreal (1989) Harnad, J., Marsden, J.E. (eds.) Les Publications CRM, Montreal, 1990, pp. 39–44; On the τ-functions of matrix hierarchies of integrable equations; On Segal-Wilson's definition of the τ-function and hierarchies AKNS-D and mcKPGoogle Scholar
  16. [DS] Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of KdV-type. J. Sov. Math.30, 1975–2036 (1985)Google Scholar
  17. [Du] Dubrovin, B.A.: Theta Functions and Nonlinear Equations. Russ. Math. Surveys35, 11–92 (1981)Google Scholar
  18. [FNR] Flaschka, H., Newell, A.C., Ratiu, T.: Kac Moody algebras and solution equations, II, Lax equation associated withA 1(1). Physica9D, 300 (1983)Google Scholar
  19. [GD] Gelfand, I.M., Dickey, L.A.: Fractional powers of operators and Hamiltonian systems. Funct. Anal. Appl.10, 259–273 (1976); The resolvent and Hamiltonian systems. Funct. Anal. Appl.11, 93–105 (1977)Google Scholar
  20. [GH] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: Wiley 1978Google Scholar
  21. [GS1] Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge: Cambridge University Press 1984Google Scholar
  22. [GS2] Guillemin, V., Sternberg, S.: On the method of Symes for integrating systems of the Toda type. Lett. Math. Phys.7, 113–115 (1983)Google Scholar
  23. [H] Harder, G.: Eine Bemerkung zu einer Arbeit von P.E. Newstaed. J. fur Mathematik242, 16–25 (1970)Google Scholar
  24. [Ha] Hartshorne, R.: Algebraic geometry. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  25. [Hi] Hitchin, N.: Stable bundles and integrable systems. Duke Math. J.54, 91–114 (1987)Google Scholar
  26. [Hi2] Hitchin, N.: Harmonic maps from the 2-torus to the 3-sphere. J. Diff. Geom.31, 627–710 (1990)Google Scholar
  27. [Ka] Kac, V.G.: Infinite dimensional Lie algebras. Second edition, Boston: Cambridge University Press 1985Google Scholar
  28. [KaP] Kac, V.G., Peterson, D.H.: 112 constructions of the basic representation of the loopgroups ofE 8, Proceedings of the symposium on anomalies, geometry and topology, Singapore: World Scientific 1985, pp. 276–298Google Scholar
  29. [KaW] Kac, V.G., Wakimoto, M.: Exceptional hierarchies of soliton equations. Theta functions, Bowdoin 1987, vol.49, Ehrenpreis, L., Gunning, R.C. (eds.) Proceedings of symposia in pure mathematics. Am. Math. Soc., 1989, pp. 191–237Google Scholar
  30. [KaSU] Katsura, T., Shimizu, Y., Ueno, K.: New Bosonization and Conformal Field Theory over Z. Commun. Math. Phys.121, 603–627 (1989)Google Scholar
  31. [KNTY] Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces Commun. Math. Phys.116, 247–308 (1988)Google Scholar
  32. [KdV] Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and a new type of long stationary waves. Phil. Mag.39, 422–443 (1895)Google Scholar
  33. [KS] Kossmann-Schwarzbach, Y.: Quasi-bigebres de Lie et groupes de Lie quasi-Poisson. C.R. Acad. Sci. Paris312, Serie I, 391–394 (1991)Google Scholar
  34. [Ko] Kostant, B.: The solution of the generalized Toda lattice and representation theory. Adv. Math.34, 195–338 (1979)Google Scholar
  35. [Kr] Krichever, I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math. Surv.32, 185–213 (1977)Google Scholar
  36. [KrN] Krichever, I.M., Novikov, S.P.: Holomorphic Bundles over Algebraic Curves and Nonlinear Equations. Russ. Math. Surv.35 (1980)Google Scholar
  37. [tKr] ten Kroode, A.P.E.: Affine Lie algebras and integrable systems. Thesis, University of Amsterdam 1988Google Scholar
  38. [Ku] Kunz, E.: Introduction to commutative algebra and algebraic geometry. Boston: Birkhäuser 1985Google Scholar
  39. [LR] Landi, G., Reina, C.: Symplectic dynamics on the universal Grassmannian and algebraic integrability. Preprint (1991)Google Scholar
  40. [Lep] Lepowsky, J.: Calculus of vertex operators. Proc. Natl. Acad. USA82, 8295–8299 (1985)Google Scholar
  41. [Lu] Lu, J.H.: Poisson and symplectic structures of a Poisson Lie group. Preprint (December 1988)Google Scholar
  42. [LuW] Lu, J.H., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Diff. Geom.31, 501–526 (1990)Google Scholar
  43. [McK] McKean, H.P.: Is there an infinite-dimensional algebraic geometry? Hints from KdV, Proc. Symp. in Pure Mathematics, vol.49, Providence, RI: Am. Math. Soc., 1989, pp. 27–37Google Scholar
  44. [Mi] Mikhalev, V.G.: A generalization of the Kac-Moody algebras with a parameter on an algebraic curve and perturbations of solitons. Commun. Math. Phys.134, 633–646 (1990)Google Scholar
  45. [vMM] van Moerbeke, P., Mumford, D.: The Spectrum of Difference Operators and Algebraic Curves. Acta Math.143, 93–154 (1979)Google Scholar
  46. [Mul1] Mulase, M.: Cohomological structure of soliton equations and Jacobian varieties. J. Diff. Geom.19, 403–430 (1984)Google Scholar
  47. [Mul2] Mulase, M.: Category of vector bundles on algebraic curves and infinite dimensional Grassmannians. Int. J. Math.1, 293–342 (1990)Google Scholar
  48. [Mum1] Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equations. Intl. Symp. on Algebraic Geometry Kyoto, 1977, pp.115–153Google Scholar
  49. [Mum2] Mumford, D.: Tata lectures on theta, I, II. Boston: Birkhäuser 1983Google Scholar
  50. [PrS] Pressley, A., Segal, G.: Loop groups. Oxford: Clarendon Press 1986Google Scholar
  51. [PrW] Previato, E., Wilson, G.: Vectorbundles over curves and solutions of the KP equations. Theta functions, Bowdoin 1987, vol.49, Ehrenpreis, L., Gunning, R.C. (eds.) Proceedings of symposia in pure mathematics. Providence, RI: Am. Math. Soc., 1989, pp. 553–569Google Scholar
  52. [R] Read A.H.: A converse of Cauchy's theorem and applications to extremal problems. Acta Math.100, 1–21 (1958)Google Scholar
  53. [RSTS] Reiman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, Affine Lie algebras and Lax Equations I, II. Invent. Math.63, 423–432 (1981)Google Scholar
  54. [Ro] Royden, H.L.: The boundary values of analytic and harmonic functions. Math. Zeitschr78, 1–24 (1962)Google Scholar
  55. [Sa] Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. RIMS Kokyoroku439, 30–46 (1981)Google Scholar
  56. [SeW] Segal, G.B., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. I.H.E.S.61, 5–65 (1985)Google Scholar
  57. [STS1] Semenov-Tyan-Shanskii, M.A.: Poisson groups and dressing transformations. J. Sov. Math.46, 1641–1657 (1989)Google Scholar
  58. [STS2] Semenov-Tyan-Shanskii, M.A.: What is a classicalr-matrix? Funct. Anal. Appl.17(4), 259–272 (1983)Google Scholar
  59. [Ser] Serre, J.P.: Géométrie Algébrique et Géométrie Analytique. Collected Works, Volume 1, Berlin, Heidelberg, New York: Springer 1986, pp. 402–443Google Scholar
  60. [Sh] Shiota, T.: Characterization of Jacobians in terms of soliton equations. Inventiones83, 333–382 (1986)Google Scholar
  61. [Si] Simha, R.R.: The Behnke-Stein theorem for open Riemann surfaces. Proc. AMS105, 876Google Scholar
  62. [Sy] Symes, W.W.: Systems of Toda type, inverse spectral problems and representation theory. Inv. Math.59, 13–51 (1980)Google Scholar
  63. [UT] Ueno, K., Takasaki, K.: Toda Lattice Hierarchy. Advanced Studies in Mathematics4, 1–95 (1984)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • M. R. Adams
    • 1
  • M. J. Bergvelt
    • 2
  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations