Communications in Mathematical Physics

, Volume 150, Issue 3, pp 519–535 | Cite as

Chern-Simons solitons, Toda theories and the chiral model

  • Gerald Dunne


The two-dimensional self-dual Chern-Simons equations are equivalent to the conditions for static, zero-energy solutions of the (2+1)-dimensional gauged nonlinear Schrödinger equation with Chern-Simons matter-gauge dynamics. In this paper we classify all finite chargeSU(N) solutions by first transforming the self-dual Chern-Simons equations into the two-dimensional chiral model (or harmonic map) equations, and then using the Uhlenbeck-Wood classification of harmonic maps into the unitary groups. This construction also leads to a new relationship between theSU(N) Toda andSU(N) chiral model solutions.


Neural Network Statistical Physic Soliton Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bilal, A., Gervais, J.-L.: Extendedc=∞ Conformal Systems from Classical Toda Field Theories. Nucl. Phys.B314, 646–686 (1989)CrossRefGoogle Scholar
  2. 2.
    Din, A., Zakrzewski, W.: Properties of General ClassicalCP N−1 Solutions. Phys. Lett.95B, 419–422 (1980); General Classical Solutions in theCP N−1 Model. Nucl. Phys.B174, 397–406 (1980); Interpretation and Further Properties of General ClassicalCP N−1 Solutions. Nucl. Phys.B182, 151–157 (1981)Google Scholar
  3. 3.
    Donaldson, S.: Twisted Harmonic Maps and the Self-Duality Equations. Proc. Lond. Math. Soc.55, 127–131 (1987)Google Scholar
  4. 4.
    Dunne, G., Jackiw, R., Pi, S.-Y., Trugenberger, C.: Self-Dual Chern-Simons Solitons and Two-Dimensional Nonlinear Equations. Phys. Rev.D43, 1332–1345 (1991)CrossRefGoogle Scholar
  5. 5.
    Dunne, G.: Self-Duality and Chern-Simons Theories. In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics. Catto, S., Rocha, A. (eds.) New York: Baruch College (1991)Google Scholar
  6. 6.
    Forgács, P., Wipf, A., Balog, J., Fehér, F., O'Raifeartaigh, L.: Liouville and Toda Theories as Conformally Reduced WZNW Theories. Phys. Lett.B227, 214–220 (1989); Toda Theory andW Algebra from a Gauged WZNW Point of View. Ann. Phys. (NY)203, 76–136 (1990)CrossRefGoogle Scholar
  7. 7.
    Ganoulis, N., Goddard, P., Olive, D.: Self-Dual Monopoles and Toda Molecules. Nucl. Phys.B205, 601–636 (1982)CrossRefGoogle Scholar
  8. 8.
    Grossman, B.: Hierarchy of Soliton Solutions to the Gauged Nonlinear Schrödinger Equation on the Plane. Phys. Rev. Lett.65, 3230–3232 (1990)CrossRefGoogle Scholar
  9. 9.
    Hitchin, N.: The Self-Duality Equations on a Riemann Surface. Proc. Lond. Math. Soc.55, 59–126 (1987)Google Scholar
  10. 10.
    See e.g. Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Berlin, Heidelberg, New York: Springer-Verlag 1990Google Scholar
  11. 11.
    Jackiw, R., Pi, S.-Y.: Soliton Solutions to the Gauged Non-Linear Schrödinger Equation on the Plane. Phys. Rev. Lett.64, 2969–2972 (1990); Classical and Quantum Non-Relativistic Chern-Simons Theory. Phys. Rev.D42, 3500–3513 (1990)CrossRefGoogle Scholar
  12. 12.
    Kostant, B.: The Solution to a Generalized Toda Lattice and Representation Theory. Adv. Math.34, 195–338 (1979)CrossRefGoogle Scholar
  13. 13.
    Leznov, A., Saveliev, M.: Representation of Zero Curvature for the System of Non-linear Partial Differential Equations\(x_{\alpha ,z\bar z} = exp(kx)_\alpha \) and its Integrability. Lett. Math. Phys.3, 389–494 (1979); Representation Theory and Integration of Nonlinear Spherically Symmetric Equations of Gauge Theories. Commun. Math. Phys.74, 111–118 (1980)CrossRefGoogle Scholar
  14. 14.
    Liouville, J.: Sur l'équation aux différences partielles\(\frac{{d^2 }}{{dudv}}log \lambda \pm \frac{\lambda }{{2a^2 }} = 0\). J. Math. Pures, Appl.18, 71–72 (1853)Google Scholar
  15. 15.
    Mansfield, P.: Solution of Toda Systems. Nucl. Phys.B208, 277–300 (1982)CrossRefGoogle Scholar
  16. 16.
    Mikhailov, A., Olshanetsky, M., Perelomov, A.: Two-Dimensional Generalized Toda Lattice. Commun. Math. Phys.79, 473–488 (1981)CrossRefGoogle Scholar
  17. 17.
    O'Raifeartaigh, L., Ruelle, P., Tsutsui, I., Wipf, A.:W-Algebras for Generalized Toda Theories. Commun. Math. Phys.143, 333–354 (1992)CrossRefGoogle Scholar
  18. 18.
    Piette, B., Zakrzewski, W.: General Solutions of theU(3) andU(4) Chiral Sigma Models in Two Dimensions. Nucl. Phys.B300, 207–222 (1988); Some Classes of General Solutions of theU(N) Chiral σ Models in Two Dimensions. J. Math. Phys.30, 2233–2237 (1989)CrossRefGoogle Scholar
  19. 19.
    Piette, B., Zait, R., Zakrzewski, W.: Solutions of theU(N) Sigma Models with the Wess-Zumino Term. Zeit. für Phys.C39, 359–364 (1988)CrossRefGoogle Scholar
  20. 20.
    Sasaki, R.: General Classical Solutions of the Complex Grassmannian andCP N−1 Sigma Models. Phys. Lett.130B, 69–72 (1983)Google Scholar
  21. 21.
    Toda, M.: Studies of a Nonlinear Lattice. Phys. Rep.8, 1–125 (1975)CrossRefGoogle Scholar
  22. 22.
    Uhlenbeck, K.: Harmonic Maps into Lie Groups (Classical Solutions of the Chiral Model). J. Diff. Geom.30, 1–50 (1989)Google Scholar
  23. 23.
    Valli, G.: On the Energy Spectrum of Harmonic Two-Spheres in Unitary Groups. Topology27, 129–136 (1988)CrossRefGoogle Scholar
  24. 24.
    Ward, R.S.: Integrable and Solvable Systems and Relations Among Them. Phil. Trans. Roy. Soc. Lond.A315, 451–457 (1985)Google Scholar
  25. 25.
    Ward, R.S.: Classical Solutions of the Chiral Model, Unitons and Holomorphic Vector Bundles. Commun. Math. Phys.128, 319–332 (1990)CrossRefGoogle Scholar
  26. 26.
    Wood, J.C.: Explicit Construction and Parametrization of Harmonic Two-Spheres in the Unitary Group. Proc. Lond. Math. Soc.58, 608–624 (1989)Google Scholar
  27. 27.
    Yoon, Y.: Zero Modes of the Non-Relativistic Self-Dual Chern-Simons Vortices on the Toda Backgrounds. Ann. Phys. (NY)211, 316–333 (1991)CrossRefGoogle Scholar
  28. 28.
    Zakrzewski, W.: Low Dimensional Sigma Models. London: Adam Hilger 1989Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Gerald Dunne
    • 1
  1. 1.Department of Mathematics and Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations