Communications in Mathematical Physics

, Volume 149, Issue 3, pp 623–636 | Cite as

Calculation of generalp-adic Feynman amplitude

  • V. A. Smirnov


The generaln-point masslessp-adic Feynman amplitude with arbitrary parameters of analytic regularization for each line is calculated. This result is presented in the form of a sum over hierarchies of a given graph. The structure of ultraviolet and infrared divergences ofp-adic Feynman amplitudes is characterized and the startriangle uniqueness identity in thep-adic case is derived.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aref'eva, I.Ya., Dragovič, B., Volovich, I.V.: On the adelic string amplitudes. Phys. Lett. B209, 445–450 (1988)Google Scholar
  2. 2.
    Bogoliubov, N.N., Parasiuk, O.S.: Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math.97, 227–266 (1957)Google Scholar
  3. 3.
    Bogoliubov, N.N., Shirkov, D.V.: Introduction to the theory of quantized fields. 4th ed. Moscow: Nauka 1984Google Scholar
  4. 4.
    Borevich, Z.I., Shafarevich, I.R.: Number theory. New York, London: Academic Press 1966Google Scholar
  5. 5.
    Breitenlohner, P., Maison, D.: Dimensional renormalization and the action principle. Commun. Math. Phys.52, 11 (1977)Google Scholar
  6. 6.
    D'Eramo, M., Peliti, L., Parisi, G.: Theoretical predictions for critical exponents at λ-point of Bose liquids. Lett. Nuovo Cim.2, 878–882 (1971)Google Scholar
  7. 7.
    Frampton, P.H., Okada, Y.:p-adic stringN-point function. Phys. Rev. Lett.60, 484–486 (1988)Google Scholar
  8. 8.
    Frampton, P.H., Okada, Y., Ubriaco, M.R.: On adelic formulas for thep-adic string. Phys. Lett. B213, 260–262 (1988)Google Scholar
  9. 9.
    Freund, P.G.O., Olson, M.: Non-archimedean strings. Phys. Lett. B199, 186–190 (1987)Google Scholar
  10. 10.
    Freund, P.G.O., Witten, E.: Adelic string amplitudes. Phys. Lett. B199, 191–195 (1987)Google Scholar
  11. 11.
    Gel'fand, I.M., Graev, M.I., Pjatetski-Shapiro, I.I.: Theory of representations, and automorphic functions. Moscow: Nauka 1966Google Scholar
  12. 12.
    Gracey, J.A., Verstegen, D.: TheO(N) Gross-Neveu and supersymmetric σ-models onp-adic fields. Mod. Phys. Lett. A5, 243–254 (1990)Google Scholar
  13. 13.
    Grossman, B.:p-adic strings, the Weyl conjectures and anomalies. Phys. Lett. B197, 101–106 (1987)Google Scholar
  14. 14.
    Hepp, K.: Proof of the Bogoliubov-Parasiuk theorem on renormalization. Commun. Math. Phys.2, 301–326 (1966)Google Scholar
  15. 15.
    Koblitz, N.:p-adic numbers,p-adic analysis and zeta-functions. 2nd ed. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  16. 16.
    Lerner, E.Y., Missarov, M.D.:p-adic Feynman and string amplitudes. Commun. Math. Phys.121, 35–48 (1989)Google Scholar
  17. 17.
    Marinari, E., Parisi, G.: On thep-adic five-point function. Phys. Lett. B203, 52–56 (1988)Google Scholar
  18. 18.
    Meurice, Y.: Quantum mechanics withp-adic numbers. Int. J. Mod. Phys. A4, 5133–5147 (1989)Google Scholar
  19. 19.
    Parisi, G.: Onp-adic functional integrals. Mod. Phys. Lett. A3, 639–643 (1988)Google Scholar
  20. 20.
    Ruelle, P., Thiran, E., Verstegen, D., Weyers, J.: Adelic string and superstring amplitudes. Mod. Phys. Lett. A4, 1745–1752 (1989)Google Scholar
  21. 21.
    Schikhof, W.H.: Ultrametric calculus. Cambridge: Cambridge University Press 1984Google Scholar
  22. 22.
    Smirnov, V.A.: Renormalization inp-adic quantum field theory. Mod. Phys. Lett. A6, 1421–1427 (1991)Google Scholar
  23. 23.
    Smirnov, V.A.: Renormalization and asymptotic expansions. Basel: Birkhäuser 1991Google Scholar
  24. 24.
    Speer, E.R.: Analytic renormalization. J. Math. Phys.9, 1404–1410 (1968)Google Scholar
  25. 25.
    't Hooft, G., Veltman, M.: Regularization and renormalization of gauge fields. Nucl. Phys. B44, 189–213 (1972)Google Scholar
  26. 26.
    Vladimirov, V.S.: Distributions over the field ofp-adic numbers. Usp. Mat. Nauk43, No. 5, 17–53 (1988)Google Scholar
  27. 27.
    Vladimirov, V.S., Volovich, I.V.:p-adic quantum mechanics. Commun. Math. Phys.123, 659–676 (1989)Google Scholar
  28. 28.
    Volovich, I.V.:p-adic space-time and string theory. Teor. Mat. Fiz.71, 337–340 (1987);p-adic string. Class. Quant. Grav.4, L83–L85 (1987); Number theory as the ultimate physical theory. Preprint CERN-TH 4981/87Google Scholar
  29. 29.
    Zavialov, O.I.: Renormalized quantum theory. Kluwer Academic Publishers 1990Google Scholar
  30. 30.
    Zimmermann, W.: Composite operators in the perturbation theory of renormalizable interactions. Ann. Phys.77, 536–569 (1973)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • V. A. Smirnov
    • 1
  1. 1.Nuclear Physics Institute of Moscow State, UniversityMoscowRussia

Personalised recommendations