Advertisement

Communications in Mathematical Physics

, Volume 149, Issue 3, pp 463–493 | Cite as

The Pfaffian line bundle

  • David Borthwick
Article

Abstract

We analyze the holomorphic Pfaffian line bundle defined over an infinite dimensional isotropic Grassmannian manifold. Using the infinite dimensional relative Pfaffian, we produce a Fock space structure on the space of holomorphic sections of the dual of this bundle. On this Fock space, an explicit and rigorous construction of the spin representations of the loop groupsLO n is given. We also discuss and prove some facts about the connection between the Pfaffian line bundle over the Grassmannian and the Pfaffian line bundle of a Dirac operator.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez-Gaumé, L., Moore, G., Vafa, C.: Theta functions, modular invariance, and strings. Commun. Math. Phys.106, 1–40 (1986)Google Scholar
  2. 2.
    Alvarez-Gaumé, L., Gomez, C., Moore, G., Vafa, C.: Strings in the operator formalism. Nucl. Phys.B303, 455–521 (1988)Google Scholar
  3. 3.
    Alvarez-Gaumé, L., Gomez, C., Reina, C.: Loop groups, Grassmannians, and string theory. Commun. Math. Phys.117, 1–36 (1988)Google Scholar
  4. 4.
    Arbarello, E., DeConcini, C., Griffiths, P.A., Harris, J.: Geometry of algebraic curves. Vols. I, II. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  5. 5.
    Arbarello, E., DeConcini, C., Kac, V.G., Procesi, C.: Moduli Spaces of Curves and Representation Theory. Commun. Math. Phys.117, 1–36 (1988)Google Scholar
  6. 6.
    Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.118, 651–701 (1988)Google Scholar
  7. 7.
    Bismut, J.-M., Freed, D.: The analysis of elliptic families I. Commun. Math. Phys.106, 159–176 (1986); The analysis of elliptic families II. Commun. Math. Phys.107, 103–163 (1986)Google Scholar
  8. 8.
    Bismut, J.-M., Gillet, H., Soule, C.: Analytic torsion and holomorphic determinant bundles I–III. Commun. Math. Phys.115, 49–78, 79–126, 301–351 (1988)Google Scholar
  9. 9.
    Bott, R.: Homogeneous vector bundles. Ann. Math.57, 203–248 (1957)Google Scholar
  10. 10.
    Connes, A.: Non-commutative differential geometry. Publ. Math. I.H.E.S.62, 41 (1984)Google Scholar
  11. 11.
    Freed, D.: Determinants, torsion, and strings. Commun. Math. Phys.107, 483–513 (1986)Google Scholar
  12. 12.
    Freed, D.: On determinant line bundles. In: Mathematical Aspects of String Theory. San Diego, 1986Google Scholar
  13. 13.
    Jaffe, A., Lesniewski, A., Weitsman, J.: Pfaffians on Hilbert space. J. Funct. Anal.83, 348–363 (1989)Google Scholar
  14. 14.
    Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA78, 3308–3312 (1981)Google Scholar
  15. 15.
    Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal theory on Riemann surfaces. Commun. Math. Phys.116, 247–308 (1988)Google Scholar
  16. 16.
    Klimek, S., Lesniewski, A.: Pfaffians on Banach spaces. J. Funct. Anal.101 (1991)Google Scholar
  17. 17.
    Kontsevich, M.L.: Virasoro algebra and Teichmüller spaces. Funct. Anal. Appl.21, 78–79 (1987)Google Scholar
  18. 18.
    Krichever, I.M.: Integration of non-linear equations by methods of algebraic geometry. Funct. Anal. Appl.11, 15–31 (1977) (Russian), 12–26 (English); Methods of algebraic geometry in the theory of non linear equations. Usp. Math. Nauk32, 183–208 (1977); Russ. Math. Surv.32, 185–214 (1977)Google Scholar
  19. 19.
    Krichever, I.M., Novikov, S.P.: Virasoro type algebras, Riemann surfaces, and structures of soliton theory. Funct. Anal. Appl.21, 46–63 (1987); Virasoro type algebras, Riemann surfaces, and strings in Minkowsky space. Funct. Anal. Appl.21, 294–307 (1987); Virasoro type algebras, energy-momentum tensor, and decomposition operators on Riemann surfaces. Funct. Anal. Appl.23 19–32 (1989)Google Scholar
  20. 20.
    Mickelsson, J., Rajeev, S.G.: Current algebras ind+1 dimensions and determinant bundles over infinite dimensional Grassmanians. Commun. Math. Phys.116, 365–400 (1988)Google Scholar
  21. 21.
    Pressley, A., Segal, G.: Loop Groups London, New York: Oxford University Press 1986Google Scholar
  22. 22.
    Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl.19, 37–41 (1985)Google Scholar
  23. 23.
    Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. RIMS Kokyuroku439, 30–40 (1981)Google Scholar
  24. 24.
    Segal, G.: The definition of conformal field theory. unpublished manuscriptGoogle Scholar
  25. 25.
    Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. I.H.E.S.61 5–64 (1985)Google Scholar
  26. 26.
    Witten, E.: Quantum field theory, Grassmannians, and algebraic curves. Commun. Math. Phys.113 529–600 (1988)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • David Borthwick
    • 1
  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations