Abstract
We analyze the holomorphic Pfaffian line bundle defined over an infinite dimensional isotropic Grassmannian manifold. Using the infinite dimensional relative Pfaffian, we produce a Fock space structure on the space of holomorphic sections of the dual of this bundle. On this Fock space, an explicit and rigorous construction of the spin representations of the loop groupsLO n is given. We also discuss and prove some facts about the connection between the Pfaffian line bundle over the Grassmannian and the Pfaffian line bundle of a Dirac operator.
Keywords
Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Alvarez-Gaumé, L., Moore, G., Vafa, C.: Theta functions, modular invariance, and strings. Commun. Math. Phys.106, 1–40 (1986)Google Scholar
- 2.Alvarez-Gaumé, L., Gomez, C., Moore, G., Vafa, C.: Strings in the operator formalism. Nucl. Phys.B303, 455–521 (1988)Google Scholar
- 3.Alvarez-Gaumé, L., Gomez, C., Reina, C.: Loop groups, Grassmannians, and string theory. Commun. Math. Phys.117, 1–36 (1988)Google Scholar
- 4.Arbarello, E., DeConcini, C., Griffiths, P.A., Harris, J.: Geometry of algebraic curves. Vols. I, II. Berlin, Heidelberg, New York: Springer 1985Google Scholar
- 5.Arbarello, E., DeConcini, C., Kac, V.G., Procesi, C.: Moduli Spaces of Curves and Representation Theory. Commun. Math. Phys.117, 1–36 (1988)Google Scholar
- 6.Beilinson, A.A., Schechtman, V.V.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.118, 651–701 (1988)Google Scholar
- 7.Bismut, J.-M., Freed, D.: The analysis of elliptic families I. Commun. Math. Phys.106, 159–176 (1986); The analysis of elliptic families II. Commun. Math. Phys.107, 103–163 (1986)Google Scholar
- 8.Bismut, J.-M., Gillet, H., Soule, C.: Analytic torsion and holomorphic determinant bundles I–III. Commun. Math. Phys.115, 49–78, 79–126, 301–351 (1988)Google Scholar
- 9.Bott, R.: Homogeneous vector bundles. Ann. Math.57, 203–248 (1957)Google Scholar
- 10.Connes, A.: Non-commutative differential geometry. Publ. Math. I.H.E.S.62, 41 (1984)Google Scholar
- 11.Freed, D.: Determinants, torsion, and strings. Commun. Math. Phys.107, 483–513 (1986)Google Scholar
- 12.Freed, D.: On determinant line bundles. In: Mathematical Aspects of String Theory. San Diego, 1986Google Scholar
- 13.Jaffe, A., Lesniewski, A., Weitsman, J.: Pfaffians on Hilbert space. J. Funct. Anal.83, 348–363 (1989)Google Scholar
- 14.Kac, V.G., Peterson, D.H.: Spin and wedge representations of infinite dimensional Lie algebras and groups. Proc. Natl. Acad. Sci. USA78, 3308–3312 (1981)Google Scholar
- 15.Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal theory on Riemann surfaces. Commun. Math. Phys.116, 247–308 (1988)Google Scholar
- 16.Klimek, S., Lesniewski, A.: Pfaffians on Banach spaces. J. Funct. Anal.101 (1991)Google Scholar
- 17.Kontsevich, M.L.: Virasoro algebra and Teichmüller spaces. Funct. Anal. Appl.21, 78–79 (1987)Google Scholar
- 18.Krichever, I.M.: Integration of non-linear equations by methods of algebraic geometry. Funct. Anal. Appl.11, 15–31 (1977) (Russian), 12–26 (English); Methods of algebraic geometry in the theory of non linear equations. Usp. Math. Nauk32, 183–208 (1977); Russ. Math. Surv.32, 185–214 (1977)Google Scholar
- 19.Krichever, I.M., Novikov, S.P.: Virasoro type algebras, Riemann surfaces, and structures of soliton theory. Funct. Anal. Appl.21, 46–63 (1987); Virasoro type algebras, Riemann surfaces, and strings in Minkowsky space. Funct. Anal. Appl.21, 294–307 (1987); Virasoro type algebras, energy-momentum tensor, and decomposition operators on Riemann surfaces. Funct. Anal. Appl.23 19–32 (1989)Google Scholar
- 20.Mickelsson, J., Rajeev, S.G.: Current algebras ind+1 dimensions and determinant bundles over infinite dimensional Grassmanians. Commun. Math. Phys.116, 365–400 (1988)Google Scholar
- 21.Pressley, A., Segal, G.: Loop Groups London, New York: Oxford University Press 1986Google Scholar
- 22.Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl.19, 37–41 (1985)Google Scholar
- 23.Sato, M.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. RIMS Kokyuroku439, 30–40 (1981)Google Scholar
- 24.Segal, G.: The definition of conformal field theory. unpublished manuscriptGoogle Scholar
- 25.Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. I.H.E.S.61 5–64 (1985)Google Scholar
- 26.Witten, E.: Quantum field theory, Grassmannians, and algebraic curves. Commun. Math. Phys.113 529–600 (1988)Google Scholar
Copyright information
© Springer-Verlag 1992