Quantum group gauge theory on quantum spaces
Article
- 105 Downloads
- 104 Citations
Abstract
We construct quantum group-valued canonical connections on quantum homogeneous spaces, including aq-deformed Dirac monopole on the quantum sphere of Podles with quantum differential structure coming from the 3D calculus of Woronowicz onSU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fibre, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces).
Keywords
Gauge Theory Group Gauge Vector Bundle Hopf Algebra Homogeneous Space
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Barr, M., and Wells, C.: Toposes, triples and theories. Berlin, Heidelberg, New York: Springer 1984Google Scholar
- 2.Connes, A.:C * algebres et géométrie différentielle. C.R. Acad. Sc. Paris290, 599–604 (1980)Google Scholar
- 3.Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation In: Araki, H., Effros, E.G., (ed.) Geometric methods in operator algebras. Research Lecture Notes in Mathematics, No. 123. New York: Longman Scientific & Technical, Wiley 1986, pp. 52–114Google Scholar
- 4.Connes, A.: Non-commutative differential geometry. Technical Report 62, IHES, 1986Google Scholar
- 5.Connes, A.: The metric aspect of non-commutative geometry. 1991Google Scholar
- 6.Connes, A., Lott, J.: Particle models and non-commutative geometry. Preprint, IHES/P/90/23, 1990Google Scholar
- 7.Connes, A., Rieffel, M.: Yang-mills theory over quantum tori. Contemp. Math.62, 237 (1987)Google Scholar
- 8.Coqueraux, R., Kastler, D.: Remarks on the differential envelopes of associative algebras. Pacific J. Math.137, 245 (1989)Google Scholar
- 9.Drinfeld, V.G.: Quantum groups. In: Gleason, A., (ed.) Proceedings of the ICM. Providence, R: AMS, 1987, pp. 798–820Google Scholar
- 10.Dubois-Violette, M., Kerner, R., Madore, J.: Non-commutative differential geometry and new models of gauge theory. J. Math. Phys.31, 323–330 (1990)CrossRefGoogle Scholar
- 11.Egusquiza, I.L.: Quantum mechanics on the quantum sphere. Preprint, DAMTP/92-18, 1992Google Scholar
- 12.Faddeev, L.D., Reshetikhin, N. Yu., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. Leningrad Math. J.1, 193–225 (1990)Google Scholar
- 13.Gockeler, M., Schucker, T.: Differential geometry, gauge theories and gravity. Cambridge: CVP 1990Google Scholar
- 14.Kastler, D.: Cyclic cohomology within differential envelope. Paris: Hermann 1988Google Scholar
- 15.Kobayashi, S., Nomizu, K.: Foundations of differential geometry. New York: Interscience (Wiley) 1969Google Scholar
- 16.Majid, S.: Braided matrix structure of the Sklyanin algebra and of the quantum lorentz group. Commun. Math. Phys.156, 607–628 (1993)Google Scholar
- 17.Majid, S.: Rank of quantum groups and braided groups in dual form. In: Proc. of the Euler Institute, St. Petersberg (1990), volume 1510 of Lect. Notes. in Math., Berlin, Heidelberg, New York: Springer, pp. 79–89Google Scholar
- 18.Majid, S.: Onq-regularization. Int. J. Mod. Phys. A5 (24), 4689–4696 (1990)CrossRefGoogle Scholar
- 19.Majid, S.: Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Mod. Phys. A5, (1) 1–91 (1990)CrossRefGoogle Scholar
- 20.Majid, S.: Doubles of quasitriangular Hopf algebras. Comm. Algebra19 (11), 3061–3073 (1991)Google Scholar
- 21.Majid, S.: Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations. J. Funct. Anal.95, 291–319 (1991)CrossRefGoogle Scholar
- 22.Podles, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys.130, 381–431 (1990)Google Scholar
- 23.Podles, P.: Quantum spheres, Lett. Math. Phys.14, 193–202 (1987)CrossRefGoogle Scholar
- 24.Radford, D.: The structure of Hopf algebras with a projection. J. Alg.92, 322–347 (1985)CrossRefGoogle Scholar
- 25.Schneider, H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Isr. J. Math.72, 167–195 (1990)Google Scholar
- 26.Sweedler, M.E.: Hopf algebras. New York: Benjamin 1969Google Scholar
- 27.Wess, J., Zumino, B.: Covariant differential calculus on the quantum hyperplane. Proc. Supl. Nucl. Phys. B18B, 302 (1990)Google Scholar
- 28.Woronowicz, S.L.: TwistedSU(2)-group, an example of a non-commutative differential calculus. Publ. RIMS (Kyoto)23, 117–181 (1987)Google Scholar
- 29.Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys.122, 125–170 (1989)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag 1993