Advertisement

Communications in Mathematical Physics

, Volume 157, Issue 3, pp 591–638 | Cite as

Quantum group gauge theory on quantum spaces

  • Thomasz Brzeziński
  • Shahn Majid
Article

Abstract

We construct quantum group-valued canonical connections on quantum homogeneous spaces, including aq-deformed Dirac monopole on the quantum sphere of Podles with quantum differential structure coming from the 3D calculus of Woronowicz onSU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fibre, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces).

Keywords

Gauge Theory Group Gauge Vector Bundle Hopf Algebra Homogeneous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barr, M., and Wells, C.: Toposes, triples and theories. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  2. 2.
    Connes, A.:C * algebres et géométrie différentielle. C.R. Acad. Sc. Paris290, 599–604 (1980)Google Scholar
  3. 3.
    Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation In: Araki, H., Effros, E.G., (ed.) Geometric methods in operator algebras. Research Lecture Notes in Mathematics, No. 123. New York: Longman Scientific & Technical, Wiley 1986, pp. 52–114Google Scholar
  4. 4.
    Connes, A.: Non-commutative differential geometry. Technical Report 62, IHES, 1986Google Scholar
  5. 5.
    Connes, A.: The metric aspect of non-commutative geometry. 1991Google Scholar
  6. 6.
    Connes, A., Lott, J.: Particle models and non-commutative geometry. Preprint, IHES/P/90/23, 1990Google Scholar
  7. 7.
    Connes, A., Rieffel, M.: Yang-mills theory over quantum tori. Contemp. Math.62, 237 (1987)Google Scholar
  8. 8.
    Coqueraux, R., Kastler, D.: Remarks on the differential envelopes of associative algebras. Pacific J. Math.137, 245 (1989)Google Scholar
  9. 9.
    Drinfeld, V.G.: Quantum groups. In: Gleason, A., (ed.) Proceedings of the ICM. Providence, R: AMS, 1987, pp. 798–820Google Scholar
  10. 10.
    Dubois-Violette, M., Kerner, R., Madore, J.: Non-commutative differential geometry and new models of gauge theory. J. Math. Phys.31, 323–330 (1990)CrossRefGoogle Scholar
  11. 11.
    Egusquiza, I.L.: Quantum mechanics on the quantum sphere. Preprint, DAMTP/92-18, 1992Google Scholar
  12. 12.
    Faddeev, L.D., Reshetikhin, N. Yu., Takhtajan, L.A.: Quantization of Lie groups and Lie algebras. Leningrad Math. J.1, 193–225 (1990)Google Scholar
  13. 13.
    Gockeler, M., Schucker, T.: Differential geometry, gauge theories and gravity. Cambridge: CVP 1990Google Scholar
  14. 14.
    Kastler, D.: Cyclic cohomology within differential envelope. Paris: Hermann 1988Google Scholar
  15. 15.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. New York: Interscience (Wiley) 1969Google Scholar
  16. 16.
    Majid, S.: Braided matrix structure of the Sklyanin algebra and of the quantum lorentz group. Commun. Math. Phys.156, 607–628 (1993)Google Scholar
  17. 17.
    Majid, S.: Rank of quantum groups and braided groups in dual form. In: Proc. of the Euler Institute, St. Petersberg (1990), volume 1510 of Lect. Notes. in Math., Berlin, Heidelberg, New York: Springer, pp. 79–89Google Scholar
  18. 18.
    Majid, S.: Onq-regularization. Int. J. Mod. Phys. A5 (24), 4689–4696 (1990)CrossRefGoogle Scholar
  19. 19.
    Majid, S.: Quasitriangular Hopf algebras and Yang-Baxter equations. Int. J. Mod. Phys. A5, (1) 1–91 (1990)CrossRefGoogle Scholar
  20. 20.
    Majid, S.: Doubles of quasitriangular Hopf algebras. Comm. Algebra19 (11), 3061–3073 (1991)Google Scholar
  21. 21.
    Majid, S.: Hopf-von Neumann algebra bicrossproducts, Kac algebra bicrossproducts, and the classical Yang-Baxter equations. J. Funct. Anal.95, 291–319 (1991)CrossRefGoogle Scholar
  22. 22.
    Podles, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys.130, 381–431 (1990)Google Scholar
  23. 23.
    Podles, P.: Quantum spheres, Lett. Math. Phys.14, 193–202 (1987)CrossRefGoogle Scholar
  24. 24.
    Radford, D.: The structure of Hopf algebras with a projection. J. Alg.92, 322–347 (1985)CrossRefGoogle Scholar
  25. 25.
    Schneider, H.-J.: Principal homogeneous spaces for arbitrary Hopf algebras. Isr. J. Math.72, 167–195 (1990)Google Scholar
  26. 26.
    Sweedler, M.E.: Hopf algebras. New York: Benjamin 1969Google Scholar
  27. 27.
    Wess, J., Zumino, B.: Covariant differential calculus on the quantum hyperplane. Proc. Supl. Nucl. Phys. B18B, 302 (1990)Google Scholar
  28. 28.
    Woronowicz, S.L.: TwistedSU(2)-group, an example of a non-commutative differential calculus. Publ. RIMS (Kyoto)23, 117–181 (1987)Google Scholar
  29. 29.
    Woronowicz, S.L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys.122, 125–170 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Thomasz Brzeziński
    • 1
  • Shahn Majid
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeU.K.

Personalised recommendations