Communications in Mathematical Physics

, Volume 128, Issue 3, pp 593–611 | Cite as

(2, 2)-Superconformal field theories near orbifold points

  • Paul Aspinwall


A thorough analysis of the “blowing-up” modes of the ℤ6 based on the Lie algebraA2⊕D4 is presented. We discover that the descriptions of these modes in the language of superconformal field theory and Calabi-Yau compactification are not immediately in agreement. A solution to this apparent inconsistency is offered which leads to the possibility of differentiably distinct Calabi-Yau manifolds giving isomorphic physics.


Neural Network Manifold Statistical Physic Field Theory Complex System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Nucl. Phys.B 258, 46 (1985)CrossRefGoogle Scholar
  2. 2.
    Dixon, L.: Some world-sheet properties of superstring compactifications, on orbifolds and otherwise. Princeton University preprint, PUTP-1074Google Scholar
  3. 3.
    See, for example, Dijkgraaf, R., Verlinde, E., Verlinde, H.: Commun. Math. Phys.115, 649 (1988) and references thereinCrossRefGoogle Scholar
  4. 4.
    Friedan, D., Kent, A., Shenker, S., Witten, E.: In preparationGoogle Scholar
  5. 5.
    Gepner, D.: Phys. Lett.199B, 380 (1987)Google Scholar
  6. 6.
    Seiberg, N.: Observations on the moduli space of superconformal field theories. IAS preprint IASSNS/HEP-87/71Google Scholar
  7. 7.
    Dixon, L., Ginsparg, P., Harvey, J.: Nucl. Phys. B306, 470 (1988)CrossRefGoogle Scholar
  8. 8.
    Dixon, L., Harvey, J., Vafa, C., Witten, C.: Nucl. Phys. B261, 678 (1985); Nucl. Phys. B274, 285 (1986)CrossRefGoogle Scholar
  9. 9.
    Friedan, D., Martinec, E., Shenker, S.: Nucl. Phys. B271, 93 (1986)CrossRefGoogle Scholar
  10. 10.
    Dixon, L., Friedan, D., Martinec, E., Shenker, S.: Nucl. Phys. B282, 13 (1987)CrossRefGoogle Scholar
  11. 11.
    Harmidi, S., Safa, C.: Nucl. Phys. B279, 465 (1987)CrossRefGoogle Scholar
  12. 12.
    Dine, M., Seiberg, N.: Nucl. Phys. B301, 357 (1988)CrossRefGoogle Scholar
  13. 13.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978Google Scholar
  14. 14.
    Pinkham, H.: Séminaires sur les Singularités des Surfaces. Demazure, M., Pinkham, H., Teissier, B. (eds.). Lecture Notes in Mathematics, vol. 777. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  15. 15.
    Eguchi, T., Hanson, A.: Phys. Lett.74B, 249 (1978)Google Scholar
  16. 16.
    Oda, T.: Convex bodies and algebraic geometry. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  17. 17.
    Oda, T.: Lectures on torus embeddings and applications. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  18. 18.
    Reid, M.: Math. Ann.278, 329 (1987)CrossRefGoogle Scholar
  19. 19.
    Strominger, A.: Topology of superstring compactification. Unified string theories. Green, M., Gross, D. (eds.). Singapore: World Scientific 1986Google Scholar
  20. 20.
    Markushevich, D., Olshanetsky, M., Perelomov, A.: Commun. Math. Phys.111, 247 (1987)CrossRefGoogle Scholar
  21. 21.
    Roan, S.-S., Yau, S.-T.: On Ricci-flat 3-fold. UC San Diego preprint 1986Google Scholar
  22. 22.
    Distler, J., Greene, B.: Some exact results on the superpotential from Calabi-Yau compactification. Harvard preprint HUTP-88/A020Google Scholar
  23. 23.
    Hirzebruch, F.: Some examples of threefolds with trivial canonical bundle. Lecture notes, Max-Planck-Institut für Mathematik, BonnGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Paul Aspinwall
    • 1
  1. 1.Dept. Theoretical PhysicsOxfordUK

Personalised recommendations