Communications in Mathematical Physics

, Volume 128, Issue 3, pp 509–520 | Cite as

Moduli space ofSU(2) monopoles and complex cyclic-Toda hierarchy

  • Yoshimasa Nakamura


We study the problem of complete parametrization of the moduli space ofSU(2) Yang-Mills-Higgs monopoles in terms of a nonlinear integrable system. It is shown that the moduli space is homeomorphic to the solution space of a new generalization of finite nonperiodic Toda equation called the complex cyclic-Toda hierarchy.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Modulus Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M. F., Hitchin, N. J.: Low energy scattering of non-Abelian monopoles. Phys. Lett.107B, 539–543 (1985); Low-energy scattering of non-Abelian magnetic monopoles. Phil. Trans. R. Soc. Lond.A315, 459–469 (1985)Google Scholar
  2. 2.
    Atiyah, M. F., Hitchin, N. J.: The geometry and dynamics of magnetic monopoles. Princeton, NJ: Princeton University Press 1988Google Scholar
  3. 3.
    Boyer, C. P., Mann, B. M.: Monopoles, non-linear σ models, and two-fold loop spaces. Commun. Math. Phys.115, 571–594 (1988)CrossRefGoogle Scholar
  4. 4.
    Donaldson, S. K.: Nahm's equations and the classification of monopoles. Commun. Math. Phys.96, 387–407 (1984)CrossRefGoogle Scholar
  5. 5.
    Ganoulis, N., Goddard, P., Olive, D.: Self-dual monopoles and Toda molecules. Nucl. Phys.B205, 601–636 (1982)CrossRefGoogle Scholar
  6. 6.
    Gantmacher, F. R.: The theory of matrices vol. I. New York: Chelsea 1959Google Scholar
  7. 7.
    Griffiths, P. A.: Linearizing flows and a cohomological interpretation of Lax equations. Am. J. Math.107, 1445–1483 (1985)Google Scholar
  8. 8.
    Hitchin, N. J.: Monopoles and geodesics. Commun. Math. Phys.80, 579–602 (1982)CrossRefGoogle Scholar
  9. 9.
    Hitchin, N. J.: On the construction of monopoles. Commun. Math. Phys.89, 145–190 (1983)CrossRefGoogle Scholar
  10. 10.
    Kalman, R. E.: Mathamatical description of linear dynamical systems. SIMA J. Control1, 152–192 (1963)CrossRefGoogle Scholar
  11. 11.
    Leznov, A. V., Saveliev, M. V.: Representation theory and integration of nonlinear spherically symmetric equations to gauge theories. Commun. Math. Phys.74, 111–118 (1980)CrossRefGoogle Scholar
  12. 12.
    Manton, N. S.: A remark on the scattering of BPS monopoles. Phys. Lett.110B, 54–56 (1982)Google Scholar
  13. 13.
    Moser, J.: Finitely many mass points on the line under the influence of an exponential potential—An integrable system. In: Lecture Notes in Physics, Vol.38, pp. 467–497. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  14. 14.
    Nahm, W.: All self-dual multimonopoles for arbitrary gauge groups. In: Structural elements in particle physics and statistical mechanics. Honerkamp, K. et al. (ed.). pp. 301–310. New York: Plenumm Press 1983Google Scholar
  15. 15.
    Nakamura, Y.: Geometry of rational functions and nonlinear integrable systems. Preprint, 1989Google Scholar
  16. 16.
    Nakamura, Y., Duncan, T. E.: Remarks on the moduli space ofSU(2) monopoles and Toda flow, to be published in Lett. Math. Phys.Google Scholar
  17. 17.
    Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifold. In: Lecture Notes in Numerical and Applied Analysis Vol.5, pp. 259–271. Fujita, H. et al. (eds.). Tokyo: Kinokuniya 1982Google Scholar
  18. 18.
    Segal, G.: The topology of spaces of rational functions. Acta. Math.143, 39–72 (1979)Google Scholar
  19. 19.
    Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. I.H.E.S.61, 5–65 (1985)Google Scholar
  20. 20.
    Symes, W. W.: Hamiltonian group actions and integrable systems. Physica1D, 339–374 (1980); Systems of Toda type, inverse spectral problems, and representation theory. Invent. Math.59, 13–51 (1980)Google Scholar
  21. 21.
    Taubes, C. H.: The existence of a non-minimal solution to theSU(2) Yang-Mills-Higgs equations on ℝ3. Part I. Commun. Math. Phys.86, 257–298 (1982); Part II. Commun. Math. Phys.86 299–320 (1982)CrossRefGoogle Scholar
  22. 22.
    Taubes, C. H.: Monopoles and maps fromS 2 toS 2; the topology of the configuration space. Commun. Math. Phys.95, 345–391 (1984)CrossRefGoogle Scholar
  23. 23.
    Taubes, C. H.: Min-max theory for the Yang-Mills-Higgs equations. Commun. Math. Phys.97, 473–540 (1985)CrossRefGoogle Scholar
  24. 24.
    Temple-Raston, M.: Closed 2-dyon orbits. Nucl. Phys.B313, 447–472 (1989)CrossRefGoogle Scholar
  25. 25.
    Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Advanced Studies in Pure Mathematics, Vol.4, pp. 1–95. Tokyo: Kinokuniya 1984Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Yoshimasa Nakamura
    • 1
  1. 1.Department of MathematicsGifu UniversityYanagido, GifuJapan

Personalised recommendations