Advertisement

Communications in Mathematical Physics

, Volume 156, Issue 3, pp 527–546 | Cite as

Invariant connections and vortices

  • Oscar García-Prada
Article

Abstract

We study the vortex equations on a line bundle over a compact Kähler manifold. These are a generalization of the classical vortex equations over ℝ2. We first prove an invariant version of the theorem of Donaldson, Uhlenbeck and Yau relating the existence of a Hermitian-Yang-Mills metric on a holomorphic bundle to the stability of such a bundle. We then show that the vortex equations are a dimensional reduction of the Hermitian-Yang-Mills equation. Using this fact and the theorem above we give a new existence proof for the vortex equations and describe the moduli space of solutions.

Keywords

Vortex Neural Network Manifold Statistical Physic Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradlow, S.B.: Vortices in Holomorphic Line Bundles over Closed Kähler Manifolds. Commun. Math. Phys.135, 1–17 (1990)CrossRefGoogle Scholar
  2. 2.
    Bradlow, S.B.: Special Metrics and Stability for Holomorphic Bundles with Global Sections. J. Diff. Geom.33, 169–214 (1991)Google Scholar
  3. 3.
    Donaldson, S.K.: Anti-self-dual Yang-Mills Connections on a Complex Algebraic Surface and Stable Vector Bundles. Proc. Lond. Math. Soc.3, 1–26 (1985)Google Scholar
  4. 4.
    Donaldson, S.K.: Infinite Determinants, Stable Bundles and Curvature. Duke Math. J.54, 231–247 (1987)CrossRefGoogle Scholar
  5. 5.
    Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four Manifolds. Oxford Mathematical Monographs. Oxford: Oxford University Press, 1990Google Scholar
  6. 6.
    García-Prada, O.: The Geometry of the Vortex Equation. D. Phil. Thesis, University of Oxford 1991Google Scholar
  7. 7.
    García-Prada, O.: A Direct Existence Proof for the Vortex Equations over a Compact Riemann Surface. Bull. London Math. Soc., to appearGoogle Scholar
  8. 8.
    García-Prada, O.: Dimensional Reduction of Stable Bundles, Vortices and Stable Pairs, Int. J. Math., to appearGoogle Scholar
  9. 9.
    Ginsburg, V.L., Landau, L.D.: Zh. Eksp. Theor. Fiz.20, 1064 (1950)Google Scholar
  10. 10.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: Wiley 1978Google Scholar
  11. 11.
    Hitchin, N.J.: Metrics on Moduli Spaces. Contemporary Mathematics58, 157–178 (1986)Google Scholar
  12. 12.
    Hitchin, N.J.: The Self-Duality Equations on a Riemann Surface. Proc. Lond. Math. Soc.55, 59–126 (1987)Google Scholar
  13. 13.
    Jaffe, A., Taubes, C.H.: Vortices and Monopoles, Progress in Physics2, Boston: Birkhäuser 1980Google Scholar
  14. 14.
    Kobayashi, S.: Curvature and Stability of Vector Bundles. Proceedings of the Japan Academy58, A4, 158–162 (1982)Google Scholar
  15. 15.
    Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Princeton, NJ: Princeton University Press 1987Google Scholar
  16. 16.
    Lübke, M.: Stability of Einstein-Hermitian Vector Bundles. Manuscripta Mathematica42, 245–257 (1983)CrossRefGoogle Scholar
  17. 17.
    Okonek, C., Schneider M., Spindler, H.: Vector Bundles on Complex Projective Spaces. Progress in Mathematics 3, Boston: Birkhäuser 1980Google Scholar
  18. 18.
    Simpson, C.T.: Constructing Variations of Hodge Structure Using Yang-Mills Theory, with Applications to Uniformisation. J. Am. Math. Soc.1, 867–918 (1989)Google Scholar
  19. 19.
    Taubes, C.H.: ArbitraryN-Vortex Solutions to the First Order Ginzburg-Landau Equations. Commun. Math. Phys.72, 277–292 (1980)CrossRefGoogle Scholar
  20. 20.
    Taubes, C.H.: On the Equivalence of the First and Second Order Equations for Gauge Theories. Commun. Math. Phys.75, 207–227 (1980)CrossRefGoogle Scholar
  21. 21.
    Uhlenbeck, K.K., Yau, S.-T.: On the Existence of Hermitian-Yang-Mills Connections on Stable Bundles Over Compact Kähler Manifolds. Commun. Pure and Appl. Math.39-S, 257–293 (1986)Google Scholar
  22. 22.
    Witten, E.: Some Exact Multipseudoparticle Solutions of Classical Yang-Mills Theory. Phys. Rev. Lett.38, 121 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Oscar García-Prada
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations