Advertisement

Inventiones mathematicae

, Volume 71, Issue 3, pp 609–642 | Cite as

Least area incompressible surfaces in 3-manifolds

  • Michael Freedman
  • Joel Hass
  • Peter Scott
Article

Keywords

Incompressible Surface Area Incompressible Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bers, L.: Local behavior of solutions of general linear elliptic equations. Comm. Pure Appl. Math.8, 473–496 (1955)Google Scholar
  2. 2.
    Cheng, S.-Y.: Eigenfunctions and Nodal Sets. Comment. Math. Helv.51, 43–55 (1976)Google Scholar
  3. 3.
    Feustel, C.D.: Some applications of Waldhausen's results on irreducible 3-manifolds. Trans. Am. Math. Soc.149, 575–583 (1970)Google Scholar
  4. 4.
    Freedman, M.: A conservative Dehn's lemmaGoogle Scholar
  5. 5.
    Freedman, M., Hass, J., Scott, P.: Closed geodesics on surfaces. Bull. London Math. Soc.14, 385–391 (1982)Google Scholar
  6. 6.
    Gulliver, R.: Regularity of minimising surfaces of prescribed mean curvature. Annals of Math.97, 275–305 (1973)Google Scholar
  7. 7.
    Hass, J.: Embedded minimal surfaces in three and four dimensional manifolds. Thesis, University of California, Berkeley 1981Google Scholar
  8. 8.
    Hempel, J.: 3-manifolds, Annals of Math. Studies No. 86, Princeton University Press, Princeton, N.J. 1976Google Scholar
  9. 9.
    Jaco, W.: Finitely presented subgroups of 3-manifold groups. Invent. Math.13, 335–346 (1971)Google Scholar
  10. 10.
    Lemaire, L.: Boundary value problems for harmonic and minimal maps of surfaces into manifolds. Annali della Scuola Normale Superiore di Pisa9, 91–103 (1982)Google Scholar
  11. 11.
    Lu, Y.-C.: Singularity theory and an introduction to catastrophe theory. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  12. 12.
    Meeks, W.H. III: Lectures on Plateau's Problem, I.M.P.A., Rio de Janeiro, Brazil, 1978Google Scholar
  13. 13.
    Meeks, W.H., III, Yau, S.T.: Topology of three dimensional manifolds and the embedding problems in minimal surface theory. Annals of Math.112, 441–485 (1980)Google Scholar
  14. 14.
    Meeks, W.H., III, Yau, S.T.: The classical plateau problem and the topology of three dimensional manifolds. Topology21, 409–442 (1982)Google Scholar
  15. 15.
    Meeks, W.H., Yau, S.T.: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179, 151–168 (1982)Google Scholar
  16. 16.
    Osserman, R.: A survey of minimal surfaces. Rheinhold Mathematical Studies Vol.25. Van Nostrand 1969Google Scholar
  17. 17.
    Sacks, J., Uhlenbeck, K.: Minimal immersions of closed riemann surfacesGoogle Scholar
  18. 18.
    Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Annals of Math.110, 127–142 (1979)Google Scholar
  19. 19.
    Scott, P.: On sufficiently large 3-manifolds. Q. J. Math., Oxford (2)23, 159–172 (1972)Google Scholar
  20. 20.
    Scott, P.: Subgroups of surface groups are almost geometric. J. London Math. Soc. (2)17, 555–565, (1978)Google Scholar
  21. 21.
    Stallings, J.R.: On fibering certain 3-manifolds (Proc. The Univ. of Georgia Inst., 1961) Prentice Hall 1962, 120–167Google Scholar
  22. 22.
    Uhlenbeck, K.: Minimal embeddings of surfaces in hyperbolic 3-manifoldsGoogle Scholar
  23. 23.
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Annals of Math.87, 56–88 (1968)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Michael Freedman
    • 1
  • Joel Hass
    • 2
  • Peter Scott
    • 1
  1. 1.Mathematics DepartmentUniversity of California at San DiegoLa JollaUSA
  2. 2.Mathematics DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations