Inventiones mathematicae

, Volume 71, Issue 3, pp 609–642 | Cite as

Least area incompressible surfaces in 3-manifolds

  • Michael Freedman
  • Joel Hass
  • Peter Scott


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bers, L.: Local behavior of solutions of general linear elliptic equations. Comm. Pure Appl. Math.8, 473–496 (1955)Google Scholar
  2. 2.
    Cheng, S.-Y.: Eigenfunctions and Nodal Sets. Comment. Math. Helv.51, 43–55 (1976)Google Scholar
  3. 3.
    Feustel, C.D.: Some applications of Waldhausen's results on irreducible 3-manifolds. Trans. Am. Math. Soc.149, 575–583 (1970)Google Scholar
  4. 4.
    Freedman, M.: A conservative Dehn's lemmaGoogle Scholar
  5. 5.
    Freedman, M., Hass, J., Scott, P.: Closed geodesics on surfaces. Bull. London Math. Soc.14, 385–391 (1982)Google Scholar
  6. 6.
    Gulliver, R.: Regularity of minimising surfaces of prescribed mean curvature. Annals of Math.97, 275–305 (1973)Google Scholar
  7. 7.
    Hass, J.: Embedded minimal surfaces in three and four dimensional manifolds. Thesis, University of California, Berkeley 1981Google Scholar
  8. 8.
    Hempel, J.: 3-manifolds, Annals of Math. Studies No. 86, Princeton University Press, Princeton, N.J. 1976Google Scholar
  9. 9.
    Jaco, W.: Finitely presented subgroups of 3-manifold groups. Invent. Math.13, 335–346 (1971)Google Scholar
  10. 10.
    Lemaire, L.: Boundary value problems for harmonic and minimal maps of surfaces into manifolds. Annali della Scuola Normale Superiore di Pisa9, 91–103 (1982)Google Scholar
  11. 11.
    Lu, Y.-C.: Singularity theory and an introduction to catastrophe theory. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  12. 12.
    Meeks, W.H. III: Lectures on Plateau's Problem, I.M.P.A., Rio de Janeiro, Brazil, 1978Google Scholar
  13. 13.
    Meeks, W.H., III, Yau, S.T.: Topology of three dimensional manifolds and the embedding problems in minimal surface theory. Annals of Math.112, 441–485 (1980)Google Scholar
  14. 14.
    Meeks, W.H., III, Yau, S.T.: The classical plateau problem and the topology of three dimensional manifolds. Topology21, 409–442 (1982)Google Scholar
  15. 15.
    Meeks, W.H., Yau, S.T.: The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179, 151–168 (1982)Google Scholar
  16. 16.
    Osserman, R.: A survey of minimal surfaces. Rheinhold Mathematical Studies Vol.25. Van Nostrand 1969Google Scholar
  17. 17.
    Sacks, J., Uhlenbeck, K.: Minimal immersions of closed riemann surfacesGoogle Scholar
  18. 18.
    Schoen, R., Yau, S.T.: Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Annals of Math.110, 127–142 (1979)Google Scholar
  19. 19.
    Scott, P.: On sufficiently large 3-manifolds. Q. J. Math., Oxford (2)23, 159–172 (1972)Google Scholar
  20. 20.
    Scott, P.: Subgroups of surface groups are almost geometric. J. London Math. Soc. (2)17, 555–565, (1978)Google Scholar
  21. 21.
    Stallings, J.R.: On fibering certain 3-manifolds (Proc. The Univ. of Georgia Inst., 1961) Prentice Hall 1962, 120–167Google Scholar
  22. 22.
    Uhlenbeck, K.: Minimal embeddings of surfaces in hyperbolic 3-manifoldsGoogle Scholar
  23. 23.
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Annals of Math.87, 56–88 (1968)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Michael Freedman
    • 1
  • Joel Hass
    • 2
  • Peter Scott
    • 1
  1. 1.Mathematics DepartmentUniversity of California at San DiegoLa JollaUSA
  2. 2.Mathematics DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations