Inventiones mathematicae

, Volume 71, Issue 3, pp 551–565 | Cite as

Topology of finite graphs

  • John R. Stallings
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burns, R.G.: A note on free groups. Proc. Amer. Math. Soc.23, 14–17 (1969)Google Scholar
  2. 2.
    Gersten, S.M.: Intersections of finitely generated subgroups of free groups and resolutions of graphs. Invent. Math.71 (1983)Google Scholar
  3. 3.
    Greenberg, L.: Discrete groups of motions. Canad. J. Math.12, 414–425 (1960)Google Scholar
  4. 4.
    Hall, M., Jr.: Coset representations in free groups. Trans. Amer. Math. Soc.67, 421–432 (1949)Google Scholar
  5. 5.
    Howson, A.G.: On the intersection of finitely generated free groups. J. London Math. Soc.29, 428–434 (1954)Google Scholar
  6. 6.
    Imrich, W.: Subgroup theorems and graphs. Combinatorial, Mathematics V. Lecture Notes Vol. 622. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  7. 7.
    McCool, J.: Some finitely presented subgroups of the automorphism group of a free group., J. Algebra35, 205–213 (1975)Google Scholar
  8. 8.
    Neumann, H.: On the intersection of finitely generated free groups. Publ. Math. Debrecen4, 36–39 (1956); Addendum5, 128 (1957)Google Scholar
  9. 9.
    Serre J-P.: Arbres, amalgames SL2. Astérisque No. 46, Société Math. de France (1977)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • John R. Stallings
    • 1
  1. 1.Department of MathematicsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations