Mathematical systems theory

, Volume 23, Issue 1, pp 21–32 | Cite as

Classes of bounded nondeterminism

  • Josep Díaz
  • Jacobo Torán


We study certain language classes located betweenP andNP that are defined by polynomial-time machines with a bounded amount of nondeterminism. We observe that these classes have complete problems and find a characterization of the classes using robust machines with bounded access to the oracle, obtaining some other results in this direction. We also study questions related to the existence of complete tally sets in these classes and closure of the classes under different types of polynomial-time reducibilities.


Computational Mathematic Complete Problem Language Class Robust Machine Complete Tally 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ad]
    L. Aldeman: Time, space and randomness. Technical Report MIT/LCS/TM-131, Massachusetts Institute of Technology, 1979.Google Scholar
  2. [Al]
    E. Allender: Invertible functions. Ph.D. dissertation, Georgia Institute of Technology, 1985.Google Scholar
  3. [BGS]
    I. Baker, J. Gill, R. Solovay: Relativization of the P=?NP question.SIAM J. Comput.,4, 1975, 431–442.Google Scholar
  4. [Ba]
    J. L. Balcázar: En torno a oraculos que ciertas maquinas consultan, y las espantables consecuencias a que ello da lugar. Ph.D. Dissertation, FIB, 1984.Google Scholar
  5. [BDG]
    J. L. Balcázar, J. Diaz, J. Gabarró:Structural Complexity, Vol. 1. Springer-Verlag, Berlin, 1988.Google Scholar
  6. [Be]
    P. Berman: Relationships between density and deterministic complexity of NP-complete languages.Proc. 5th ICALP, 1978, pp. 63–72.Google Scholar
  7. [Bo]
    R. Book: Tally languages and complexity classes.Inform. and Control, 1974, 186–193.Google Scholar
  8. [Bu]
    S. Buss: The boolean formula value problem is in ALOGTIME.Proc. 19th STOC, 1987, pp. 123–131.Google Scholar
  9. [CH]
    J. Cai, L. Hemachandra: On the power of parity.Proc. Symp. Theory of Aspects of Computer Science, 1989, pp. 229–240.Google Scholar
  10. [G]
    J. Gill: Computational complexity of probabilistic Turing machines.SIAM J. Comput.,6, 1977, 675–695.Google Scholar
  11. [HH1]
    J. Hartmanis, L. Hemachandra: Complexity classes without machines: on complete languages for UP.Proc. 13th ICALP, 1986, pp. 123–135.Google Scholar
  12. [HH2]
    J. Hartmanis, L. Hemachandra: One-way functions, robustness, and the nonisomorphism ofNP-complete sets.Proc. 2nd Structure in Complexity Theory Conf., 1987, pp. 160–175.Google Scholar
  13. [HW]
    L. Hemachandra, G. Wechsung: Using randomness to characterize the complexity of computation.Proc. IFIP, 1989, to appear.Google Scholar
  14. [JL]
    N. Jones, W. Laaser: Complete problems for deterministic polynomial time.Theoret. Comput. Sci.,3, 1976, 105–118.Google Scholar
  15. [KF]
    C. Kintala, P. Fisher: Refining nondeterminism in relativized complexity classes.SIAM J. Comput.,13, 1984, 329–337.Google Scholar
  16. [K]
    K. Ko: On helping by robust oracle machines.Theoret. Computer Sci.,52, 1987, 15–36.Google Scholar
  17. [KSTT]
    J. Köbler, U. Schöning, S. Toda, J. Torán: Turing machines with few accepting computations and low sets for PP.Proc. 4th Structure in Complexity Theory Conf., 1989, pp. 208–216.Google Scholar
  18. [L]
    R. Ladner: On the structure of polynomial time reducibility.J. Assoc. Comput. Mach.,22, 1975, 155–171.Google Scholar
  19. [M]
    S. Mahaney: Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis.Proc. IEEE Symp. on Foundations of Computer Science, 1980, pp. 54–60.Google Scholar
  20. [S1]
    U. Schöning: Robust algorithms: a different approach to oracles.Theoret. Comput. Sci.,40, 1985, 57–66.Google Scholar
  21. [S2]
    U. Schöning:Complexity and Structure. Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1986.Google Scholar
  22. [SB]
    U. Schöning, R. Book: Immunity, relativizations, and nondeterminism.SIAM J. Comput.,9, 1984, 46–53.Google Scholar
  23. [V]
    L. Valiant: Relative complexity of checking and evaluating.Inform. Process. Lett.,5, 1976, 20–23.Google Scholar
  24. [XDB]
    M. Xu, J. Doner, R. Book: Refining nondeterminism in relativizations of complexity classes.J. Assoc. Comput. Mach.,30, 1983, 677–685.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Josep Díaz
    • 1
  • Jacobo Torán
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations