Cellular and Molecular Neurobiology

, Volume 15, Issue 3, pp 361–370

Chronic administration of the antidepressants phenelzine, despiramine, clomipramine, or maprotiline decreases binding to 5-hydroxytryptamine2A receptors without affecting benzodiazepine binding sites in rat brain

  • Kathryn G. Todd
  • David J. McManus
  • Glen B. Baker


1. The effects of chronic administration of five antidepressant drugs on the benzodiazepine and 5-HT2A binding sites in the same rat brain were assessed.

2. Clomipramine, desipramine, maprotiline, fluoxetine, and phenelzine (all 10 mg/kg/day) were administered s.c. for 21 days by Alzet osmotic minipumps.

3. Results showed that none of the drugs changed the density or affinity of benzodiazepine binding sites, yet at the same dose all the drugs with the exception of fluoxetine decreased binding to 5-HT2A receptors in the same animals.

Key words

antidepressants benzodiazepine receptors clomipramine desipramine fluoxetine 5-hydroxytryptamine receptors maprotiline phenelzine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, K., Paetsch, P. R., Baker, G. B., and Greenshaw, A. J. (1993). Chronic antidepressant drug treatment attenuates motor-suppresant effects of apomorphine without changing3H-GBR 12935 binding.Eur. J. Pharmacol. 249125–131.CrossRefPubMedGoogle Scholar
  2. Aspeslet, L. J. (1994).Chirality and Metabolism: Studies on the Antidepressants rac-Tranylcypromine and rac-Fluoxetine, Ph.D thesis, University of Alberta, Edmonton, AB.Google Scholar
  3. Baker, G. B., and Dewhurst, W. G. (1985). Biochemical theories of affective disorders. InPharmacotherapy of Affective Disorders (W. G. Dewhurst and G. B. Baker, Eds.), New York University Press, New York, pp. 1–59.Google Scholar
  4. Baker, G. B., and Greenshaw, A. J. (1989). Effects of long-term administration of antidepressants and neuroleptics on receptors in the central nervous system.Cell. Mol. Neurobiol. 91–44.CrossRefPubMedGoogle Scholar
  5. Baron, B., Ogden, A., Siegel, B., Stegeman, J., Ursillo, R., and Dudley, M. (1988). Rapid down-regulation of beta-adrenoceptors by coadministration of desipramine and fluoxetine.Eur. J. Pharmacol. 154125–134.CrossRefPubMedGoogle Scholar
  6. Bel, N., and Artigas, F. (1993). Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphé nuclei.Synapse 15243–245.CrossRefPubMedGoogle Scholar
  7. Blier, P., and de Montigney, C. (1994). Current advances and trends in the treatment of depression.Trends Pharmacol. Sci.,15220–226.CrossRefPubMedGoogle Scholar
  8. Briley, M., and Moret, C. (1993). Neurobiological mechanisms involved in antidepressant therapeis.Clin. Neuropharmacol. 16387–400.PubMedGoogle Scholar
  9. Bunney, W. E., and Davis, J. M. (1965). Norepinephrine in depressive reactions. A review.Arch. Gen. Psychiat. 13483–494.PubMedGoogle Scholar
  10. Burnet, P. W. J., Michelson, D., Smith, M. A., Gold, P. W., and Sternberg, E. M. (1994). The effect of chronic imipramine administration on the densities of 5-HT1A and 5-HT2 receptors and the abundancies of 5-HT receptor and transporter mRNA in the cortex, hippocampus and dorsal raphe of three strains of rat.Brain Res. 638311–324.CrossRefPubMedGoogle Scholar
  11. Cadogan, A. K., Marsden, C. A., Tulloch, I., and Kendall, D. A. (1993). Evidence that chronic administration of paroxetine or fluoxetine enhances 5-HT2-receptor function in the brain of the guinea pig.Neuropharmacology 32249–256.CrossRefPubMedGoogle Scholar
  12. Cheetham, S. C., Crompton, M. R., Katona, C. L. E., and Horton, R. W. (1988). Brain GABAA/benzodiazepine binding sites and glutamic acid decarboxylase activity in depressed suicide victims.Brain Res. 460114–123.CrossRefPubMedGoogle Scholar
  13. Cross, J. A., and Horton, R. W. (1987). Are increases in GABAB receptors consistent findings following chronic antidepressant administration?Eur. J. Pharmacol. 141159–162.CrossRefPubMedGoogle Scholar
  14. Deakin, J. F. W. (1988). 5-HT2 receptors, depression and anxiety.Pharmacol. Biochem. Behav. 29819–820.CrossRefPubMedGoogle Scholar
  15. Doble, A., and Martin, I. L. (1992). Multiple benzodiazepine receptors: No reason for anxiety.Trends Pharmacol. Sci. 1376–81.CrossRefPubMedGoogle Scholar
  16. Drebit, R., Baker, G. B., and Dewhurst, W. G. (1988). Determination of maprotiline and desmethylmaprotiline in plasma and urine by gas-liquid chromatolgraphy with nitrogen-phosphorus detection.J. Chromatogr. Biomed. Appl. 432334–339.CrossRefGoogle Scholar
  17. Eison, A. S., Yocca, F. D., and Gianutsos, G. (1991). Effect of chronic administration of antidepressant drugs on 5-HT2 mediated behavior in the rat following noradrenergic or serotonergic denervation.J. Neural Transm.,8419–32.CrossRefGoogle Scholar
  18. Fuxe, K., Ogren, S., Agnoti, L., Benfenati, F., Fredholm, B., Andersson, K., Zini, I., and Eneroth, P. (1983). Chronic antidepressant treatment and central 5-HT synapses.Neuropharmacology 22389–400.CrossRefPubMedGoogle Scholar
  19. Giardino, L., Zanni, M., Velardo, A., Amato, G., and Calza, L. (1993). Effect of sertraline treatment on benzodiazepine receptors in the rat brain.J. Neural Transm. 9431–41.CrossRefGoogle Scholar
  20. Goodnough, D. B., and Baker, G. B. (1994). 5-HT2 and beta-adrenergic receptor regulation in rat brain following chronic treatment with desipramine and fluoxetine alone and in combination.J. Neurochem. 622262–2268.PubMedGoogle Scholar
  21. Heninger, C., Saito, N., Tallman, J. F., Carrett, K. M., Vitek, M. P., Duman, R. S., and Gallager, D. W. (1990). Effects of continuous diazepam administration on GABAA subunit mRNA in rat brain.J. Mol. Neurosci. 2101–107.PubMedGoogle Scholar
  22. Hrdina, P. D. (1993). Is there action beyond receptors?J. Psychiatr. Neurosci. 1857–69.Google Scholar
  23. Hrdina, P. D., and Vu, T. B. (1993). Chronic fluoxetine treatment upregulates 5-HT uptake sites and 5-HT2 receptors in rat brain: an autoradiographic study.Synapse 14324–331.CrossRefPubMedGoogle Scholar
  24. Humphrey, P. P. A., Hartig, P., and Hoyer, D. (1993). A proposed new nomenclature for 5-HT receptors.Trends Pharmacol. Sci. 14233–236.CrossRefPubMedGoogle Scholar
  25. Hyttel, J. (1994). Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs).Int. Clin. Psychopharmacol. 919–26.PubMedGoogle Scholar
  26. Kang, I., and Miller, L. G. (1991). Decreased GABAA receptor subunit mRNA concentrations following chronic lorazepam administration.Br. J. Pharmacol. 1031285–1289.PubMedGoogle Scholar
  27. Kellar, K. J., Cascio, C. S., Butler, K. R., and Kurtzke, R. N. (1981). Differential effects of electroconvulsive shock and antidepressant drugs on serotonin2 receptors in rat brain.Eur. J. Pharmacol. 69515–518.CrossRefPubMedGoogle Scholar
  28. Kendall, D. A., and Nahorski, S. R. (1985). 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants.J. Pharmacol. Exp. Ther. 233473–479.PubMedGoogle Scholar
  29. Kimber, J. R., Cross, J. A., and Horton, R. W. (1987). Benzodiazepine and GABAA receptors in rat brain following chronic antidepressant drug administration.Biochem. Pharmacol. 364175–4176.CrossRefPubMedGoogle Scholar
  30. Klimek, V., Zak-Knapik, J., and Mackowiak, M. (1994). Effects of repeated treatment with fluoxetine and citalopram, 5-HT uptake inhibitors, on 5-HT1A and 5-HT2 receptors in the rat brain.J. Psychiatr. Neurosci. 1963–67.Google Scholar
  31. Lafaille, F., Welner, S. A., and Suryani-Cadotte, B. E. (1991). Regulation of serotonin type 2 (5-HT2) andβ-adrenergic receptors in rat cerebral cortex following novel and classical antidepressant treatment.J. Psychiatr. Neurosci. 16209–214.Google Scholar
  32. Lapin, I. P., and Oxenkrug, G. F. (1969). Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect.Lancet i132–136.CrossRefGoogle Scholar
  33. Lesch, K. P., Hough, C. J., Aulakh, C. S., Wolozin, B. L., Tolliver, T. J., Hill, J. L., Akiyoshi, J., Chuang, D. M., and Murphy, D. L. (1992). Fluoxetine modulates G proteinαs,αq, andα12 subunit messenger RNA expression in rat brain.Eur. J. Pharmacol. Mol. Pharmacol. 227233–237.CrossRefGoogle Scholar
  34. Li, Q., Brownfield, M. S., Battaglia, G., Cabrera, T. M., Levy, A. D., Rittenhouse, P. A., and van de Kar, L. D. (1993). Long-term treatment with the antidepressents fluoxetine and desipramine potentiates endocrine responses to the serotonin agonists 6-chloro-2[1-piperazinyl]pyrazine (MK-212) and (±)-1-(2,5-dimethyoxy-4-iodophenyl)-2-aminopropane HCl (DOI).J. Pharmacol. Exp. Ther. 266836–844.PubMedGoogle Scholar
  35. Lloyd, K. G., Thuret, F., and Pilc, A. (1985). Upregulation of gamma-aminobutyric acid GABAB binding sites in rat frontal cortex: A common action of repeated administration of different classes of antidepressants and electroshock.J. Pharmacol. Exp. Ther. 234191–199.Google Scholar
  36. Lloyd, K. G., Zivkovic, B., Scatton, B., Morselli, P. L., and Bartholini, G. (1989). The GABAergic hypothesis of depression.Prog. Neuro-Psychopharmacol. Biol. Psychiat. 13341–351.CrossRefGoogle Scholar
  37. Lowther, S., De Paermentier, F., Crompton, M. R., Katona, C. L. E., and Horton, R. W. (1994). Brain 5-HT2 receptors in suicide victims: Violence of death, depression and effects of antidepressant treatment.Brain Res. 642281–289.CrossRefPubMedGoogle Scholar
  38. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurements with the folin phenol reagent.J. Biol. Chem. 193265–275.PubMedGoogle Scholar
  39. Mann, C. D., Vu, T. B., and Hrdina, P. D. (1995). Protein kinase C in rat brain cortex and hippocampus: Effect of chronic treatment with desipramine and fluoxetineBr. J. Pharmacol.,115 (in press).Google Scholar
  40. McKenna, K. F., McManus, D., Baker, G. B., and Coutts, R. T. (1994). Chronic administration of the antidepressant phenelzine and its N-acetyl analogue: Effects on GABAergic function.J. Neural Transm. 41 (Suppl):115–122.Google Scholar
  41. McManus, D. J. (1992).Effects of Chronic Antidepressant Drug Administration on GABAergic Mechanisms in Rat Brain, Ph.D. thesis, University of Alberta, Edmonton, AB.Google Scholar
  42. McManus, D., and Greenshaw, A. J. (1991). Differential effects of antidepressants on GABAB andβ-adrenergic receptors in rat cerebral cortex.Biochem. Pharmacol. 421525–1528.CrossRefPubMedGoogle Scholar
  43. Nayeem, N., Green, T. P., Martin, I. L., and Barnard, E. A. (1994). Quatenary structure of the native GABA-A receptor determined by electron microscopic image analysis.J. Neurochem. 62815–818.PubMedGoogle Scholar
  44. Papp, M., Klimek, V., and Willner, P. (1994). Effects of imipramine on serotonergic andβ-adrenergic receptor binding on a realistic animal model of depression.Psychopharmacology 114309–314.PubMedGoogle Scholar
  45. Paul, I. A., Duncan, G. E., Powell, K. R., Mueller, R. A., Hong, J. S., and Breese, G. R. (1988). Regionally specific neural adaptation ofβ-adrenergic and 5-hydroxytryptamine2 receptors after antidepressant administration in the forced swim test and after chronic antidepressant drug treatment.J. Pharmacol. Exp. Ther. 246956–962.PubMedGoogle Scholar
  46. Peroutka, S. J., and Snyder, S. H. (1980). Long-term antidepressant treatment decreases spiroperidol-labelled serotonin receptor binding.Science 21088–90.PubMedGoogle Scholar
  47. Petty, F., Kramer, G. L., and Hendrickse, W. (1993). GABA and depression. InBiology of Depressive Disorders, Part A: A Systems Perspective (J. J. Mann and D. J. Kupfer, Eds.), Plenum Press, New York, Chap. 4.Google Scholar
  48. Primus, R. J., and Gallager, D. W. (1992). GABAA receptor subunit mRNA levels are differentially influed by chronic FG7142 and diazepam exposure.Eur. J. Pharmacol. (Mol. Pharmacol.)22621–28.CrossRefGoogle Scholar
  49. Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeberg, P. H. (1989). Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology.Nature 338582–585.CrossRefPubMedGoogle Scholar
  50. Przegalinski, E., Rokosz-Pelc, A., Baran, L., and Vetulani, J. (1987). Repeated treatment with antidepressant drugs does not affect the benzodiazepine receptors in preincubated membrane preparations from mouse and rat brain.Pharmacol. Biochem. Behav. 2635–36.CrossRefPubMedGoogle Scholar
  51. Richards, G., Schoch, P., and Haefely, W. (1991). Benzodiazepine receptors: New vistas.Sem. Neurosci. 3191–203.CrossRefGoogle Scholar
  52. Sanders-Bush, E., Breeding, M., Knoth, K., and Tsutsumi, M. (1989). Sertraline-induced desensitization of the serotonin 5HT-2 receptor transmembrane signaling system.Psychopharmacology 9964–69.CrossRefPubMedGoogle Scholar
  53. Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: A review of supporting evidence.Am. J. Psychiat. 122509–522.PubMedGoogle Scholar
  54. Stocks, G. M., Cheetham, S. C., Crompton, M. R., Katona, C. L. E., and Horton, R. W. (1990). Benzodiazepine binding sites in amygdala and hippocampus of depressed suicide victims.J. Affect. Disord. 1811–15.CrossRefPubMedGoogle Scholar
  55. Suranyi-Cadotte, B. E., Dam, T. V., and Quirion, R. (1985). Antidepressant-anxiolytic interaction density of benzodiazepine receptors in rat brain following chronic administration of antidepressants.Eur. J. Pharmacol. 106673–675.CrossRefGoogle Scholar
  56. Suzdak, P. D., and Gianutsos, G. (1986). Effect of chronic imipramine or baclofen on GABAB binding and cyclic AMP production in cerebral cortex.Eur. J. Pharmacol. 131129–133.CrossRefPubMedGoogle Scholar
  57. Wamsley, J. K., Byerley, W. F., McCabe, R. T., McConnell, E. J., Dawson, T. M., and Grosser, B. I. (1987). Receptor alterations associated with serotonergic agents: An autoradiographic analysis.J. Clin. Psychiat. 48 (Suppl): 19–25.Google Scholar
  58. Watanabe, Y., Saki, R. R., McEwen, B. S., and Mendelson, S. (1993). Stress and antidepressant effects on hippocampal and cortical 5-HT(1A) and 5-HT(2) receptors and transport sites for serotonin.Brain Res. 61587–94.CrossRefPubMedGoogle Scholar
  59. Wieland, S., Fischette, C. T., and Lucki, I. (1993). Effect of chronic treatments with tandospirone and imipramine on serotonin-mediated behavioural responses and monoamine receptors.Neuropharmacology 32561–573.CrossRefPubMedGoogle Scholar
  60. Wurtman, R. J., and Axelrod, J. (1963). A sensitive and specific assay for the estimation of monoamine oxidase.Biochem. Pharmacol. 121439–1441.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Kathryn G. Todd
    • 1
  • David J. McManus
    • 1
  • Glen B. Baker
    • 1
  1. 1.Neurochemical Research Unit, Department of Psychiatry, and Faculty of Pharmaceutical SciencesUniversity of Alberta, EdmontonAlbertaCanada
  2. 2.Neurochemical Research Unit, Department of Psychiatry, Mackenzie Health Sciences CentreUniversity of Alberta, EdmontonAlbertaCanada

Personalised recommendations