Advertisement

Cellular and Molecular Neurobiology

, Volume 14, Issue 5, pp 557–568 | Cite as

Design and application of antisense oligonucleotides in cell culture,in vivo, and as therapeutic agents

  • Wolfgang Brysch
  • Karl-Hermann Schlingensiepen
Contemporary Techniques

Summary

1. Synthetic oligonucleotides can inhibit the expression of a gene in a sequence specific manner on the transcriptional and translational level. These molecules are usually referred to as antisense oligonucleotides.

2. Antisense mediated inhibition of gene expression is a valuable tool to analyze the function of a genein vivo and can also be used for therapeutic gene suppression.

3. A number of factors such as the mode of action, specificity, chemistry, and pharmacology must be carefully considered for the design and successful application of antisense oligonucleotides.

4. Assay systems and controls must be chosen as to assure that the observed biological effects of antisense oligonucleotides do in fact reflect the result of a specific gene inhibition.

5. This article critically discusses these factors in view of the literature and our own experience with a wide range of cell types and animal models, targeting different genes. The emphasis is on the use of phosphorothioate oligodeoxynucleotides in cell cultures,in vivo, and as potential drugs.

Key words

antisense oligonucleotides gene expression pharmacology drug design cell cultures brain research 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akabayashi, A., Wahlestedt, C., Alexander, J. T., and Leibowitz, S. F. (1994). Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion.Mol. Brain Res. 2155–61.PubMedGoogle Scholar
  2. Bennett, C. F., Condon, T. P., Grimm, S., Chan, H., and Chain, M.-Y. (1994). Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides.J. Immunol. 1523530–3540.PubMedGoogle Scholar
  3. Breslauer, K. J., Frank, R., Blocker, H., and Marky, L. A. (1986). Predicting DNA duplex stability from the base sequence.Proc. Natl. Acad. Sci. USA 833746–3750.PubMedGoogle Scholar
  4. Brysch, W., Magal, E., Louis, J. C., Kunst, M., Klinger, I., Schlingensiepen, R., and Schlingensiepen, K.-H. (1994a). Inhibition of p185/c-erbB-2 proto-oncogene expression by antisense oligodeoxynucleotides down-regulates p185-associated tyrosine-kinase activity and strongly inhibits mammary tumor-cell proliferation.Cancer Gene Ther. 199–105.PubMedGoogle Scholar
  5. Brysch, W., Rifai, A., Tischmeyer, W., and Schlingensiepen, K.-H. (1994b). Rational drug design, pharmacokinetics and organ uptake of antisense phosphorothioate oligodeoxynucleotidesin vivo. InAntisense Oligonucleotide Therapy: Current Status (S. Agrawal, Ed.), Humana Press, Totowa (in press).Google Scholar
  6. Budker, V., Knorre, D., and Vlassov, V. (1991). Cell membranes as barriers for antisense constructions.Antisense Res. Dev. 2177–184.Google Scholar
  7. Caceres, A., and Kosik, K. S. (1990). Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons.Nature 343461–463.PubMedGoogle Scholar
  8. Campbell, J. M., Bacon, T. A., and Wickstrom, E. (1990). Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid.J. Biochem. Biophys. Methods 20259–267.PubMedGoogle Scholar
  9. Cazenave, C., and Hélène, C. (1991). Antisense oligonucleotides. InAntisense Nucleic Acids and Proteins. Fundamentals and Applications (J. N. M. Mol and A. R. van der Krol, Eds.), Dekker, New York, p. 47ff.Google Scholar
  10. Cazenave, C., Loreau, N., Toulmé, J. J., and Hélène C. (1986). Anti-messenger oligodeoxynucleotides: Specific inhibition of rabbitβ-globin synthesis in wheat germ extracts and Xenopus oocytes.Biochimie 68 1063–1073.PubMedGoogle Scholar
  11. Chiasson, B. J., Hooper, M. L., Murphy, P. R., and Robertson, H. A. (1993). Antisense oligonucleotide eliminates in vivo expression of c-fos in mammalian brain.Eur. J. Mol. Pharmacol. 227451–453.Google Scholar
  12. Chiang, M. Y., Chan, H., Zounes, M. A., Freier, S. M., Lima, W. F., and Bennett, C. F. (1991). Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms.J. Biol. Chem. 266162–171.Google Scholar
  13. Chubb, J. M., and Hogan, M. E. (1993). Human therapeutics based on triple helix technology.TIBTECH 10132–136.Google Scholar
  14. Dagle, J. M., Walder, J. A., and Weeks, D. L. (1990). Targeted degradation of mRNA in Xenopus oocytes and embryos directed by modified oligonucleotides: studies of An2 and cyclin in embryogenesis.Nucleic Acids Res. 184751–4757.PubMedGoogle Scholar
  15. Eckstein, F. (1983). Phosphorothioate analogues of nucleotides—Tools for the investigation of biochemical processes.Angewandte Chem. 22423–506.Google Scholar
  16. Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and Turner, D. H. (1986). Improved free-energy parameters for predictions of RNA duplex stability.Proc. Natl. Acad. Sci. USA 839373–9377.PubMedGoogle Scholar
  17. Gewirtz, A. M., and Calabretta, B. (1988). Ac-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesisin vitro.Science 2421303–1306.PubMedGoogle Scholar
  18. Goodchild, J., Kim, B., and Zamecnik, P. C. (1991). The clearance and degradation of oligodeoxynucleotides following intravenous injection into rabbits.Antisense Res. Dev. 1153–160.PubMedGoogle Scholar
  19. Guinosso, C. J., Hoke, G. D., Ecker, D. J., Mirabelli, C. K., Crooke, S. T., and Cook, P. D. (1991). Synthesis, biophysical and biological evaluation of 2′-modified antisense oligonucleotides.Nucleosides Nucleotides 10259–265.Google Scholar
  20. Heilig, M., Engel, J. A., and Söderpalm, B. (1993). C-fos antisense in the nucleus accumbens blocks the locomotor stimulant action of cocaine.Eur. J. Pharmacol. 236339–340.PubMedGoogle Scholar
  21. Helm, C. W., Shrestha, K., Thomas, S., Shingleton, H. M., and Miller, D. M. (1993). A unique c-myc-targeted triplex-forming oligonucleotide inhibits the growth of ovarian and cervical carcinomas in vitro.Gynecol. Oncol. 49339–343.PubMedGoogle Scholar
  22. Huang, Z., Schneider, K. C., and Benner, S. A. (1991). Building blocks for analogues of ribo- and deoxyribonucleotides with dimethylene-sulfide, -sulfoxide, and -sulfone groups replacing phosphodiester linkages.J. Org. Chem. 563869–3882.Google Scholar
  23. Jachimczak, P., Bogdahn, U., Schneider, J., Behl, C., Meixensberger, J., Apfel, R., Dörries, R., Schlingensiepen, K.-H., and Brysch, W. (1993). TGF-beta2-specific phosphorothioate-antisense oligodeoxynucleotides may reverse cellular immunosuppression in malignant glioma.J. Neurosurg. 78944–951.PubMedGoogle Scholar
  24. Kitajima, I., Shinohara, T., Bilakovics, J., Brown, D. A., Xu, X., and Nerenberg, M. (1993). Ablation of transplanted HTLV-I tax-transformed tumors in mice by antisense inhibition of NF-kappa B.Science 2591523.PubMedGoogle Scholar
  25. Kulka, M., Smith, C. C., Aurelian, L., Fishelevich, R., Meade, K., Miller, P., and Ts'o, P. O. (1989). Site specificity of the inhibitory effects of oligo(nucleoside methylphosphonate)s complementary to the acceptor splice junction of herpes simplex virus type 1 immediate early mRNA 4.Proc. Natl. Acad. Sci. USA 866868–6872.PubMedGoogle Scholar
  26. LeDoan, T., Perrouault, L., Praseuth, D., Habhoub, N., Decout, J., Thuong, T., Lhomme, J., and Hélène, C. (1987). Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative.Nucl. Acids Res. 157749–7760.PubMedGoogle Scholar
  27. Miller, P. S., McFarland, K. B., Jayaraman, K., and Ts'o, P. O. P. (1981). Biochemical and biological effects of non-ionic nucleic acid methylphosphonates.Biochemistry 201874–1880.PubMedGoogle Scholar
  28. Mirabelli, C. K., Bennett, C. F., Anderson, K., and Crooke, S. T. (1991). In vitro and in vivo pharmacologic activities of antisense oligonucleotides.Anticancer Drug Des. 6647–661.PubMedGoogle Scholar
  29. Morrison, R. S. (1991). Suppression of basic fibroblast growth factor expression by antisense oligodeoxynucleotides inhibits the growth of transformed human astrocytes.J. Biol. Chem. 266728–734.PubMedGoogle Scholar
  30. Morvan, F., Rayner, B., Imbach, J. L., Thenet, S., Bertrand, J. R., Paoletti, J., Malvy, C., and Paoletti, C. (1987). Alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases.Nucleic Acids Res. 153421–3437.PubMedGoogle Scholar
  31. Morvan, F., Porumb, H., Degols, G., Lefebvre, I., Pompon, A., Sproat, B. S., Rayner, B., Malvy, C., Lebleu, B., and Imbach, J. L. (1993). Comparative evalution of seven oligonucleotide analogues as potential antisense agents.J. Med. Chem. 36280–287.PubMedGoogle Scholar
  32. Moser, H. E., and Dervan, P. B. (1987). Sequence-specific cleavage of double helical DNA by triple helix formation.Science 238645–660.PubMedGoogle Scholar
  33. O'Keefe, S. J., Wolfes, H., Kiessling, A. A., and Cooper, G. M. (1989). Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg.Proc. Natl. Acad. Sci. USA 867038–7042.PubMedGoogle Scholar
  34. Perbost, M., Lucas, M., Chavis, C., Pompon, A., Baumgartner, H., Rayner, B., Griengl, H., and Imbach, J. L. (1989). Sugar modified oligonucleotides. I. Carbooligodeoxynucleotides as potenaial antisense agents.Biochem. Biophys. Res. Commun. 165742–747.PubMedGoogle Scholar
  35. Postel, E., Flint, S. J., Kessler, D. J., and Hogan, M. E. (1991). Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels.Proc. Natl. Acad. Sci. USA 888227–8331.PubMedGoogle Scholar
  36. Reed, J. C., Cuddy, M., Haldar, S., Croce, C., Nowell, P., Makover, D., and Bradley, K. (1990). BCL2-mediated tumorigenicity of a human T-lymphoid cell line: Synergy with MYC and inhibition by BCL2 antisense.Proc. Natl. Acad. Sci. USA 873660–3664.PubMedGoogle Scholar
  37. Schlingensiepen, K.-H., Schlingensiepen, R., Kunst, M., Klinger, I., Gerdes, W., Seifert, W., and Brysch W. (1993). Opposite functions ofjun-B and c-jun in growth regulation and neuronal differentiation.Dev. Genet 14305–312.PubMedGoogle Scholar
  38. Schlingensiepen, K.-H., Wollnik, F., Kunst, M., Schlingensiepen, R., Herdegen, T., and Brysch, W. (1994). The role of Jun transcription factor expression and phosphorylation in neuronal differentiation, neuronal cell death and in plastic adaptations in-vivo.Cell. Mol. Neurobiol. 14487–505.PubMedGoogle Scholar
  39. Stein, C. A., and Cheng, Y. C. (1993). Antisense oligonucleotides as therapeutic agents—Is the bullet really magical?Science 2611004–1012.PubMedGoogle Scholar
  40. Stein, C. A., Mori, K., Loke, S. L., Subasinghe, C., Shinozuka, K., Cohen, J. S., and Neckers, L. M. (1988). Phosphorothioate and normal oligodeoxyribonucleotides with 5′-linked acridine: characterization and preliminary kinetics of cellular uptake.Gene 72333–341.PubMedGoogle Scholar
  41. Stephenson, M., and Zamecnik, P. C. (1978). Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide.Proc. Natl. Acad. Sci. USA 75285–288.PubMedGoogle Scholar
  42. Strauss, M., Hering, S., Lieber, A., Herrmann, G., Griffin, B. E., and Arnold, W. (1992). Stimulation of cell division and fibroblast focus formation by antisense repression of retinoblastoma protein synthesis.Oncogene 7769–773.PubMedGoogle Scholar
  43. Tischmeyer, W., Grimm, R., Schicknick, H., Brysch W., and Schlingensiepen, K.-H. (1994). Sequence-specific impairment of learning by c-jun antisense oligonucleotides.Neuroreport 51501–1504.PubMedGoogle Scholar
  44. Vickers, T., Baker, B. F., Cook, P. D., Zounes, M. Buckheit, R. W., Jr, Germany, J., and Ecker, D. J. (1991). Inhibition of HIV-LTR gene expression by oligonucleotides targeted to the TAR element.Nucleic Acids Res. 193359–3368.PubMedGoogle Scholar
  45. Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H., Inturrisi, C. E., and Reis, D. J. (1993a). Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infractions.Nature 363260–263.PubMedGoogle Scholar
  46. Wahlestedt, C., Pich, E. M., Koob, G. F., Yee, F., and Heilig, M. (1993b). Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides.Science 259528–531.PubMedGoogle Scholar
  47. Whitesell, L., Geselowitz, D. Chavany, C., Fahmy, B., Walbridge, S., Alger, J. R., and Neckers, L. M. (1993). Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: Implications for therapeutic application within the central nervous system.Proc. Natl. Acad. Sci. USA 90 4665–4669.PubMedGoogle Scholar
  48. Wickstrom, E. (1986). Oligodeoxynucleotide stability in subcellular extracts and culture media.J. Biochem. Biophys. Methods 1397–102.PubMedGoogle Scholar
  49. Wollnik, F., Brysch, W., Uhlmann, E., Gillardon, F., Bravo, R., Zimmermann, M., Schlingensiepen, K.-H., and Herdegen, T. (1994). Block of c-fos andjunB expression by antisense-oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock.Eur. J. Neurosci. (in press).Google Scholar
  50. Zhang, M., and Creese, I. (1993). Antisense oligodeoxynucleotide reduced brain dopamine D2 receptors: Behavioral correlates.Neurosci. Lett. 161223–226.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Wolfgang Brysch
    • 1
  • Karl-Hermann Schlingensiepen
    • 2
  1. 1.Biognostik Ltd.GöttingenGermany
  2. 2.Laboratory of Molecular Tumor- and Neurobiology, Dept 110Max-Planck-Institut für Biophysikalische ChemieGöttingenGermany

Personalised recommendations